
The Why3 platform

Version 0.71, October 2011

François Bobot1,2

Jean-Christophe Filliâtre1,2

Claude Marché2,1

Andrei Paskevich1,2

1 LRI, CNRS, Univ Paris-Sud, Orsay, F-91405
2 INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893

c©2010-2011 Univ Paris-Sud, CNRS, INRIA
This work has been partly supported by the `U3CAT' national ANR project
(ANR-08-SEGI-021-08, http://frama-c.cea.fr/u3cat) and by the Hi-Lite
(http://www.open-do.org/projects/hi-lite/) FUI project of the System@tic
competitivity cluster.

http://frama-c.cea.fr/u3cat
http://www.open-do.org/projects/hi-lite/

Foreword

This is the manual for the Why platform version 3, or Why3 for short. Why3 is a complete
reimplementation [5] of the former Why platform [10] for program veri�cation. Among the
new features are: numerous extensions to the input language, a new architecture for calling
external provers, and a well-designed API, allowing to use Why3 as a software library. An
important emphasis is put on modularity and genericity, giving the end user a possibility
to easily reuse Why3 formalizations or to add support for a new external prover if wanted.

Availability

Why3 project page is http://why3.lri.fr/. The last distribution is available there, in
source format, together with this documentation and several examples.

Why3 is distributed as open source and freely available under the terms of the GNU
LGPL 2.1. See the �le LICENSE.

See the �le INSTALL for quick installation instructions, and Section 8.1 of this document
for more detailed instructions.

Contact

There is a public mailing list for users' discussions: http://lists.gforge.inria.fr/

mailman/listinfo/why3-club.
Report any bug to the Why3 Bug Tracking System: https://gforge.inria.fr/

tracker/?atid=10293&group_id=2990&func=browse.

Acknowledgements

We gratefully thank the people who contributed to Why3, directly or indirectly: Romain
Bardou, Simon Cruanes, Johannes Kanig, Stéphane Lescuyer, Simão Melo de Sousa, Guil-
laume Melquiond, Benjamin Monate, Asma Tafat.

Summary of Changes w.r.t. Why 2

The main new features with respect to Why 2.xx are the following.

1. Completely redesigned input syntax for logic declarations

• new syntax for terms and formulas

• enumerated and algebraic data types, pattern matching

• recursive de�nitions of logic functions and predicates, with termination checking

• inductive de�nitions of predicates

• declarations are structured in components called "theories", which can be reused
and instantiated

3

http://why3.lri.fr/
http://lists.gforge.inria.fr/mailman/listinfo/why3-club
http://lists.gforge.inria.fr/mailman/listinfo/why3-club
https://gforge.inria.fr/tracker/?atid=10293&group_id=2990&func=browse
https://gforge.inria.fr/tracker/?atid=10293&group_id=2990&func=browse

4

2. More generic handling of goals and lemmas to prove

• concept of proof task

• generic concept of task transformation

• generic approach for communicating with external provers

3. Source code organized as a library with a documented API, to allow access to Why3
features programmatically.

4. GUI with new features w.r.t. the former GWhy

• session save and restore

• prover calls in parallel

• splitting, and more generally applying task transformations, on demand

• ability to edit proofs for interactive provers (Coq only for the moment) on any
subtask

5. Extensible architecture via plugins

• users can de�ne new transformations

• users can add connections to additional provers

Contents

Contents 5

I Tutorial 7

1 Getting Started 9
1.1 Hello Proofs . 9
1.2 Getting Started with the GUI . 9
1.3 Getting Started with the Why3 Command 15

2 The Why3 Language 17

3 The Why3ML Programming Language 25
3.1 Problem 1: Sum and Maximum . 26
3.2 Problem 2: Inverting an Injection . 28
3.3 Problem 3: Searching a Linked List . 29
3.4 Problem 4: N-Queens . 32
3.5 Problem 5: Amortized Queue . 37

4 The Why3 API 41
4.1 Building Propositional Formulas . 41
4.2 Building Tasks . 42
4.3 Calling External Provers . 43
4.4 Building Terms . 45
4.5 Building Quanti�ed Formulas . 46
4.6 Building Theories . 46
4.7 Applying transformations . 46
4.8 Writing new functions on term . 46

II Reference Manual 47

5 Language Reference 49
5.1 Lexical conventions . 49
5.2 Why3 Language . 51
5.3 Why3ML Language . 56

6 Standard Library: Why3 Theories 59
6.1 Library bool . 59
6.2 Library int . 59

5

6 CONTENTS

6.3 Library real . 60
6.4 Library floating_point . 60
6.5 Library array . 60
6.6 Library option . 61
6.7 Library list . 61

7 Standard Library: Why3ML Modules 63
7.1 Library ref . 63
7.2 Library array . 63
7.3 Library queue . 63
7.4 Library stack . 63
7.5 Library hashtbl . 63
7.6 Library string . 64

8 Reference manuals for the Why3 tools 65
8.1 Compilation, Installation . 65
8.2 Installation of external provers . 67
8.3 The why3config command-line tool . 67
8.4 The why3 command-line tool . 68
8.5 The why3ide GUI . 69
8.6 The why3ml tool . 72
8.7 The why3bench tool . 72
8.8 The why3replayer tool . 73
8.9 The why3.conf con�guration �le . 74
8.10 Drivers of External Provers . 75
8.11 Transformations . 75

Bibliography 79

List of Figures 81

Index 83

Part I

Tutorial

7

Chapter 1

Getting Started

1.1 Hello Proofs

The �rst and basic step in using Why3 is to write a suitable input �le. When one wants
to learn a programming language, you start by writing a basic program. Here we start by
writing a �le containing a basic set of goals.

Here is our �rst Why3 �le, which is the �le examples/hello_proof.why of the distri-
bution.

theory HelloProof "My very first Why3 theory"

goal G1 : true

goal G2 : (true -> false) /\ (true \/ false)

use import int.Int

goal G3: forall x:int. x*x >= 0

end

Any declaration must occur inside a theory, which is in that example called Theo-
ryProof and labelled with a comment inside double quotes. It contains three goals named
G1, G2, G3. The �rst two are basic propositional goals, whereas the third involves some
integer arithmetic, and thus it requires to import the theory of integer arithmetic from the
Why3 standard library, which is done by the use declaration above.

We don't give more details here about the syntax and refer to Chapter 2 for detailed
explanations. In the following, we show how this �le is handled in the Why3 GUI (Sec-
tion 1.2) then in batch mode using the why3 executable (Section 1.3).

1.2 Getting Started with the GUI

The graphical interface allows to browse into a �le or a set of �les, and check the validity
of goals with external provers, in a friendly way. This section presents the basic use of this
GUI. Please refer to Section 8.5 for a more complete description.

The GUI is launched on the �le above as follows.

why3ide hello_proof.why

9

10 CHAPTER 1. GETTING STARTED

Figure 1.1: The GUI when started the very �rst time

When the GUI is started for the �rst time, you should get a window which looks like the
screenshot of Figure 1.1.

The left column is a tool bar which provides di�erent actions to apply on goals. The
section �Provers� displays the provers that were detected as installed on your computer1.
Three provers were detected, in this case these are Alt-Ergo [6], Coq [3] and Simplify [8].

The middle part is a tree view that allows to browse inside the theories. In this tree
view, we have a structured view of the �le: this �le contains one theory, itself containg
three goals.

In Figure 1.2, we clicked on the row corresponding to goal G1. The task associated
with this goal is then displayed on the top right, and the corresponding part of the input
�le is shown on the bottom right part.

Calling provers on goals

You are now ready to call these provers on the goals. Whenever you click on a prover
button, this prover is called on the goal selected in the tree view. You can select several
goals at a time, either by using multi-selection (typically by clicking while pressing the
Shift or Ctrl key) or by selecting the parent theory or the parent �le. Let us now select the

1If not done yet, you must perform prover autodetection using why3config �detect-provers

1.2. GETTING STARTED WITH THE GUI 11

Figure 1.2: The GUI with goal G1 selected

theory �HelloProof� and click on the Simplify button. After a short time, you should get
the display of Figure 1.3.

The goal G1 is now marked with a green �checked� icon in the status column. This
means that the goal is proved by the Simplify prover. On the contrary, the two other goals
are not proved, they remain marked with an orange question mark.

You can immediately attempt to prove the remaining goals using another prover, e.g.
Alt-Ergo, by clicking on the corresponding button. The goal G3 should be proved now,
but not G2.

Applying transformations

Instead of calling a prover on a goal, you can apply a transformation to it. Since G2 is a
conjunction, a possibility is to split it into subgoals. You can do that by clicking on the
Split button of section �Transformations� of the left toolbar. Now you have two subgoals,
and you can try again a prover on them, for example Simplify. We already have a lot
of goals and proof attempts, so it is a good idea to close the sub-trees which are already
proved: this can be done by the menu View/Collapse proved goals, or even better by its
shortcut �Ctrl-C�. You should see now what is displayed on Figure 1.4.

The �rst part of goal G2 is still unproved. As a last resort, we can try to call the Coq
proof assistant. The �rst step is to click on the Coq button. A new sub-row appear for
Coq, and unsurprisingly the goal is not proved by Coq either. What can be done now
is editing the proof: select that row and then click on the Edit button in section �Tools�
of the toolbar. This should launch the Coq proof editor, which is coqide by default (see
Section 8.5 for details on how to con�gure this). You get now a regular Coq �le to �ll in, as

12 CHAPTER 1. GETTING STARTED

Figure 1.3: The GUI after Simplify prover is run on each goal

Figure 1.4: The GUI after splitting goal G2 and collapsing proved goals

1.2. GETTING STARTED WITH THE GUI 13

Figure 1.5: CoqIDE on subgoal 1 of G2

shown on Figure 1.5. Please take care of the comments of this �le. Only the part between
the two last comments can be modi�ed. Moreover, these comments themselves should not
be modi�ed at all, they are used to mark the part you modify, in order to regenerate the
�le if the goal is changed.

Of course, in that particular case, the goal cannot be proved since it is not valid. The
only thing to do is to �x the input �le, as explained below.

Modifying the input

Currently, the GUI does not allow to modify the input �le. You must edit the �le external
by some editor of your choice. Let's assume we change the goal G2 by replacing the �rst
occurrence of true by false, e.g.

goal G2 : (false -> false) /\ (true \/ false)

We can reload the modi�ed �le in the IDE using menu File/Reload, or the shortcut �Ctrl-R�.
We get the tree view shown on Figure 1.6.

The important feature to notice �rst is that all the previous proof attempts and trans-
formations were saved in a database � an XML �le created when theWhy3 �le was opened
in the GUI for the �rst time. Then, for all the goals that remain unchanged, the previous
proofs are shown again. For the parts that changed, the previous proofs attempts are
shown but marked with "(obsolete)" so that you know the results are not accurate. You
can now retry to prove all what remains unproved using any of the provers.

14 CHAPTER 1. GETTING STARTED

Figure 1.6: File reloaded after modifying goal G2

Replaying obsolete proofs

Instead of pushing a prover's button to rerun its proofs, you can replay the existing but
obsolete proof attempts, by clicking on the Replay button. By default, Replay only replays
proofs that were successful before. If you want to replay all of them, you must select the
context all goals at the top of the left tool bar.

Notice that replaying can be done in batch mode, using the why3replayer tool (see
Section 8.8) For example, running the replayer on the hello_proof example is as follows
(assuming G2 still is (true -> false) / (true false)).

$ why3replayer hello_proof

Info: found directory 'hello_proof' for the project

Opening session...[Xml warning] prolog ignored

[Reload] file '../hello_proof.why'

[Reload] theory 'HelloProof'

[Reload] transformation split_goal for goal G2

done

Progress: 9/9

2/3

+--file ../hello_proof.why: 2/3

+--theory HelloProof: 2/3

+--goal G2 not proved

Everything OK.

The last line tells us that no di�erence was detected between the current run and the
informations in the XML �le. The tree above reminds us that the G2 is not proved.

1.3. GETTING STARTED WITH THE WHY3 COMMAND 15

Cleaning

You may want to clean some the proof attempts, e.g. removing the unsuccessful ones when
a project is �nally fully proved.

A proof or a transformation can be removed by selecting it and clicking on button
Remove. You must con�rm the removal. Beware that there is no way to undo such a
removal.

The Clean button performs an automatic removal of all proofs attempts that are un-
successful, while there exists a successful proof attempt for the same goal.

1.3 Getting Started with the Why3 Command

The why3 command allows to check the validity of goals with external provers, in batch
mode. This section presents the basic use of this tool. Refer to Section 8.4 for a more
complete description of this tool and all its command-line options.

The very �rst time you want to use Why, you should proceed with autodetection of
external provers. We have already seen how to do it in the Why3 GUI. On the command
line, this is done as follows (here �>� is the prompt):

> why3config --detect

This prints some information messages on what detections are attempted. To know which
provers have been successfully detected, you can do as follows.

> why3 --list-provers

Known provers:

alt-ergo (Alt-Ergo)

coq (Coq)

simplify (Simplify)

The �rst word of each line is a unique identi�er for the associated prover. We thus have
now the three provers Alt-Ergo [6], Coq [3] and Simplify [8].

Let's assume now we want to run Simplify on the HelloProof example. The command
to type and its output are as follows, where the -P option is followed by the unique prover
identi�er (as shown by �list-provers option).

> why3 -P simplify hello_proof.why

hello_proof.why HelloProof G1 : Valid (0.10s)

hello_proof.why HelloProof G2 : Unknown: Unknown (0.01s)

hello_proof.why HelloProof G3 : Unknown: Unknown (0.00s)

Unlike Why3 GUI, the command-line tool does not save the proof attempts or applied
transformations in a database.

We can also specify which goal or goals to prove. This is done by giving �rst a theory
identi�er, then goal identi�er(s). Here is the way to call Alt-Ergo on goals G2 and G3.

> why3 -P alt-ergo hello_proof.why -T HelloProof -G G2 -G G3

hello_proof.why HelloProof G2 : Unknown: Unknown (0.01s)

hello_proof.why HelloProof G3 : Valid (0.01s)

Finally, a transformation to apply to goals before proving them can be speci�ed. To
know the unique identi�er associated to a transformation, do as follows.

16 CHAPTER 1. GETTING STARTED

> why3 --list-transforms

Known non-splitting transformations:

[...]

Known splitting transformations:

[...]

split_goal

split_intro

Here is how you can split the goal G2 before calling Simplify on resulting subgoals.

> why3 -P simplify hello_proof.why -a split_goal -T HelloProof -G G2

hello_proof.why HelloProof G2 : Unknown: Unknown (0.00s)

hello_proof.why HelloProof G2 : Valid (0.00s)

Section 8.11 gives the description of the various transformations available.

Chapter 2

The Why3 Language

This chapter describes the input syntax, and informally gives its semantics, illustrated by
examples.

A Why3 text contains a list of theories. A theory is a list of declarations. Declarations
introduce new types, functions and predicates, state axioms, lemmas and goals. These
declarations can be directly written in the theory or taken from existing theories. The
base logic of Why3 is �rst-order logic with polymorphic types.

Example 1: lists

The Figure 2.1 contains an example of Why3 input text, containing three theories. The
�rst theory, List, declares a new algebraic type for polymorphic lists, list 'a. As in ML,
'a stands for a type variable. The type list 'a has two constructors, Nil and Cons. Both
constructors can be used as usual function symbols, respectively of type list 'a and 'a

× list 'a → list 'a. We deliberately make this theory that short, for reasons which
will be discussed later.

The next theory, Length, introduces the notion of list length. The use import List

command indicates that this new theory may refer to symbols from theory List. These
symbols are accessible in a quali�ed form, such as List.list or List.Cons. The import

quali�er additionally allows us to use them without quali�cation.
Similarly, the next command use import int.Int adds to our context the theory

int.Int from the standard library. The pre�x int indicates the �le in the standard
library containing theory Int. Theories referred to without pre�x either appear earlier in
the current �le, e.g. List, or are prede�ned.

The next declaration de�nes a recursive function, length, which computes the length of
a list. The function and predicate keywords are used to introduce function and predicate
symbols, respectively. Why3 checks every recursive, or mutually recursive, de�nition for
termination. Basically, we require a lexicographic and structural descent for every recursive
call for some reordering of arguments. Notice that matching must be exhaustive and that
every match expression must be terminated by the end keyword.

Despite using higher-order �curried� syntax, Why3 does not permit partial application:
function and predicate arities must be respected.

The last declaration in theory Length is a lemma stating that the length of a list is
non-negative.

The third theory, Sorted, demonstrates the de�nition of an inductive predicate. Every
such de�nition is a list of clauses: universally closed implications where the consequent is
an instance of the de�ned predicate. Moreover, the de�ned predicate may only occur in
positive positions in the antecedent. For example, a clause:

17

18 CHAPTER 2. THE WHY3 LANGUAGE

theory List

type list 'a = Nil | Cons 'a (list 'a)

end

theory Length

use import List

use import int.Int

function length (l : list 'a) : int =

match l with

| Nil -> 0

| Cons _ r -> 1 + length r

end

lemma Length_nonnegative : forall l:list 'a. length l >= 0

end

theory Sorted

use import List

use import int.Int

inductive sorted (list int) =

| Sorted_Nil :

sorted Nil

| Sorted_One :

forall x:int. sorted (Cons x Nil)

| Sorted_Two :

forall x y : int, l : list int.

x <= y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))

end

Figure 2.1: Example of Why3 text.

| Sorted_Bad :

forall x y : int, l : list int.

(sorted (Cons y l) -> y > x) -> sorted (Cons x (Cons y l))

would not be allowed. This positivity condition assures the logical soundness of an induc-
tive de�nition.

Note that the type signature of sorted predicate does not include the name of a
parameter (see l in the de�nition of length): it is unused and therefore optional.

Example 1 (continued): lists and abstract orderings

In the previous section we have seen how a theory can reuse the declarations of another
theory, coming either from the same input text or from the library. Another way to
referring to a theory is by �cloning�. A clone declaration constructs a local copy of the
cloned theory, possibly instantiating some of its abstract (i.e. declared but not de�ned)
symbols.

19

theory Order

type t

predicate (<=) t t

axiom Le_refl : forall x : t. x <= x

axiom Le_asym : forall x y : t. x <= y -> y <= x -> x = y

axiom Le_trans: forall x y z : t. x <= y -> y <= z -> x <= z

end

theory SortedGen

use import List

clone import Order as O

inductive sorted (l : list t) =

| Sorted_Nil :

sorted Nil

| Sorted_One :

forall x:t. sorted (Cons x Nil)

| Sorted_Two :

forall x y : t, l : list t.

x <= y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))

end

theory SortedIntList

use import int.Int

clone SortedGen with type O.t = int, predicate O.(<=) = (<=)

end

Figure 2.2: Example of Why3 text (continued).

Consider the continued example in Figure 2.2. We write an abstract theory of partial
orders, declaring an abstract type t and an abstract binary predicate <=. Notice that an
in�x operation must be enclosed in parentheses when used outside a term. We also specify
three axioms of a partial order.

There is little value in use'ing such a theory: this would constrain us to stay with the
type t. However, we can construct an instance of theory Order for any suitable type and
predicate. Moreover, we can build some further abstract theories using order, and then
instantiate those theories.

Consider theory SortedGen. In the beginning, we use the earlier theory List. Then
we make a simple clone theory Order. This is pretty much equivalent to copy-pasting
every declaration from Order to SortedGen; the only di�erence is that Why3 traces the
history of cloning and transformations and drivers often make use of it (see Section 8.10).

Notice an important di�erence between use and clone. If we use a theory, say List,
twice (directly or indirectly: e.g. by making use of both Length and Sorted), there is
no duplication: there is still only one type of lists and a unique pair of constructors. On
the contrary, when we clone a theory, we create a local copy of every cloned declaration,
and the newly created symbols, despite having the same names, are di�erent from their
originals.

20 CHAPTER 2. THE WHY3 LANGUAGE

Returning to the example, we �nish theory SortedGen with a familiar de�nition of
predicate sorted; this time we use the abstract order on the values of type t.

Now, we can instantiate theory SortedGen to any ordered type, without having to
retype the de�nition of sorted. For example, theory SortedIntList makes clone of
SortedGen (i.e. copies its declarations) substituting type int for type O.t of SortedGen
and the default order on integers for predicate O.(<=). Why3 will control that the result
of cloning is well-typed.

Several remarks ought to be made here. First of all, why should we clone theory Order

in SortedGen if we make no instantiation? Couldn't we write use import Order as O

instead? The answer is no, we could not. When cloning a theory, we only can instantiate
the symbols declared locally in this theory, not the symbols imported with use. Therefore,
we create a local copy of Order in SortedGen to be able to instantiate t and (<=) later.

Secondly, when we instantiate an abstract symbol, its declaration is not copied from
the theory being cloned. Thus, we will not create a second declaration of type int in
SortedIntList.

The mechanism of cloning bears some resemblance to modules and functors of ML-
like languages. Unlike those languages, Why3 makes no distinction between modules and
module signatures, modules and functors. Any Why3 theory can be use'd directly or
instantiated in any of its abstract symbols.

The command-line tool why3 (described in Section 1.3), allows us to see the e�ect of
cloning. If the input �le containing our example is called lists.why, we can launch the
following command:

> why3 lists.why -T SortedIntList

to see the resulting theory SortedIntList:

theory SortedIntList

(* use BuiltIn *)

(* use Int *)

(* use List *)

axiom Le_refl : forall x:int. x <= x

axiom Le_asym : forall x:int, y:int. x <= y -> y <= x -> x = y

axiom Le_trans : forall x:int, y:int, z:int. x <= y -> y <= z

-> x <= z

(* clone Order with type t = int, predicate (<=) = (<=),

prop Le_trans1 = Le_trans, prop Le_asym1 = Le_asym,

prop Le_refl1 = Le_refl *)

inductive sorted (list int) =

| Sorted_Nil : sorted (Nil:list int)

| Sorted_One : forall x:int. sorted (Cons x (Nil:list int))

| Sorted_Two : forall x:int, y:int, l:list int. x <= y ->

sorted (Cons y l) -> sorted (Cons x (Cons y l))

(* clone SortedGen with type t1 = int, predicate sorted1 = sorted,

predicate (<=) = (<=), prop Sorted_Two1 = Sorted_Two,

prop Sorted_One1 = Sorted_One, prop Sorted_Nil1 = Sorted_Nil,

prop Le_trans2 = Le_trans, prop Le_asym2 = Le_asym,

21

prop Le_refl2 = Le_refl *)

end

In conclusion, let us brie�y explain the concept of namespaces in Why3. Both use and
clone instructions can be used in three forms (the examples below are given for use, the
semantics for clone is the same):

• use List as L � every symbol s of theory List is accessible under the name L.s.
The as L part is optional, if it is omitted, the name of the symbol is List.s.

• use import List as L � every symbol s from List is accessible under the name
L.s. It is also accessible simply as s, but only up to the end of the current namespace,
e.g. the current theory. If the current theory, that is the one making use, is later
used under the name T, the name of the symbol would be T.L.s. (This is why we
could refer directly to the symbols of Order in theory SortedGen, but had to qualify
them with O. in SortedIntList.) As in the previous case, as L part is optional.

• use export List � every symbol s from List is accessible simply as s. If the
current theory is later used under the name T, the name of the symbol would be T.s.

Why3 allows to open new namespaces explicitly in the text. In particular, the instruc-
tion �clone import Order as O� can be equivalently written as:

namespace import O

clone export Order

end

However, since Why3 favours short theories over long and complex ones, this feature is
rarely used.

Example 2: Einstein's problem

We now consider another, slightly more complex example: how to use Why3 to solve a
little puzzle known as �Einstein's logic problem�1. The problem is stated as follows. Five
persons, of �ve di�erent nationalities, live in �ve houses in a row, all painted with di�erent
colors. These �ve persones own di�erent pets, drink di�erent beverages and smoke di�erent
brands of cigars. We are given the following information:

• The Englishman lives in a red house;

• The Swede has dogs;

• The Dane drinks tea;

• The green house is on the left of the white one;

• The green house's owner drinks co�ee;

• The person who smokes Pall Mall has birds;

• The yellow house's owner smokes Dunhill;

• In the house in the center lives someone who drinks milk;

1This Why3 example was contributed by Stéphane Lescuyer.

22 CHAPTER 2. THE WHY3 LANGUAGE

• The Norwegian lives in the �rst house;

• The man who smokes Blends lives next to the one who has cats;

• The man who owns a horse lives next to the one who smokes Dunhills;

• The man who smokes Blue Masters drinks beer;

• The German smokes Prince;

• The Norwegian lives next to the blue house;

• The man who smokes Blends has a neighbour who drinks water.

The question is: what is the nationality of the �sh's owner?
We start by introducing a general-purpose theory de�ning the notion of bijection, as

two abstract types together with two functions from one to the other and two axioms
stating that these functions are inverse of each other.

theory Bijection

type t

type u

function of t : u

function to u : t

axiom To_of : forall x : t. to (of x) = x

axiom Of_to : forall y : u. of (to y) = y

end

We now start a new theory, Einstein, which will contain all the individuals of the
problem.

theory Einstein "Einstein's problem"

First we introduce enumeration types for houses, colors, persons, drinks, cigars and pets.

type house = H1 | H2 | H3 | H4 | H5

type color = Blue | Green | Red | White | Yellow

type person = Dane | Englishman | German | Norwegian | Swede

type drink = Beer | Coffee | Milk | Tea | Water

type cigar = Blend | BlueMaster | Dunhill | PallMall | Prince

type pet = Birds | Cats | Dogs | Fish | Horse

We now express that each house is associated bijectively to a color, by cloning the
Bijection theory appropriately.

clone Bijection as Color with type t = house, type u = color

It introduces two functions, namely Color.of and Color.to, from houses to colors and
colors to houses, respectively, and the two axioms relating them. Similarly, we express
that each house is associated bijectively to a person

clone Bijection as Owner with type t = house, type u = person

and that drinks, cigars and pets are all associated bijectively to persons:

23

clone Bijection as Drink with type t = person, type u = drink

clone Bijection as Cigar with type t = person, type u = cigar

clone Bijection as Pet with type t = person, type u = pet

Next we need a way to state that a person lives next to another. We �rst de�ne a predicate
leftof over two houses.

predicate leftof (h1 h2 : house) =

match h1, h2 with

| H1, H2

| H2, H3

| H3, H4

| H4, H5 -> true

| _ -> false

end

Note how we advantageously used pattern matching, with an or-pattern for the four pos-
itive cases and a universal pattern for the remaining 21 cases. It is then immediate to
de�ne a neighbour predicate over two houses, which completes theory Einstein.

predicate rightof (h1 h2 : house) =

leftof h2 h1

predicate neighbour (h1 h2 : house) =

leftof h1 h2 \/ rightof h1 h2

end

The next theory contains the 15 hypotheses. It starts by importing theory Einstein.

theory EinsteinHints "Hints"

use import Einstein

Then each hypothesis is stated in terms of to and of functions. For instance, the hypothesis
�The Englishman lives in a red house� is declared as the following axiom.

axiom Hint1: Color.of (Owner.to Englishman) = Red

And so on for all other hypotheses, up to �The man who smokes Blends has a neighbour
who drinks water�, which completes this theory.

...

axiom Hint15:

neighbour (Owner.to (Cigar.to Blend)) (Owner.to (Drink.to Water))

end

Finally, we declare the goal in the fourth theory:

theory Problem "Goal of Einstein's problem"

use import Einstein

use import EinsteinHints

goal G: Pet.to Fish = German

end

and we are ready to use Why3 to discharge this goal with any prover of our choice.

Chapter 3

The Why3ML Programming

Language

This chapter describes the Why3ML programming language. A Why3ML input text con-
tains a list of theories (see chapter 2) and/or modules. Modules extend theories with
programs. Programs can use all types, symbols, and constructs from the logic. They also
provide extra features:

• In a record type declaration, some �elds can be declared mutable.

• There are programming constructs with no counterpart in the logic:

� mutable �eld assignment;

� sequence;

� loops;

� exceptions;

� local and anonymous functions;

� annotations: pre- and postconditions, assertions, loop invariants.

• A program function can be non-terminating or can be proved to be terminating using
a variant (a term together with a well-founded order relation).

• An abstract program type t can be introduced with a logical model τ : inside pro-
grams, t is abstract, and inside annotations, t is an alias for τ .

Programs are contained in �les with su�x .mlw. They are handled by the tool why3ml,
which has a command line similar to why3. For instance

% why3ml myfile.mlw

will display the veri�cation conditions extracted from modules in �le myfile.mlw, as a set
of corresponding theories, and

% why3ml -P alt-ergo myfile.mlw

will run the SMT solver Alt-Ergo on these veri�cation conditions. Program �les are also
handled by the GUI tool why3ide. See Chapter 8 for more details regarding command
lines.

As an introduction to Why3ML, we use the �ve problems from the VSTTE 2010 ver-
i�cation competition [15]. The source code for all these examples is contained in Why3's
distribution, in sub-directory examples/programs/.

25

26 CHAPTER 3. THE WHY3ML PROGRAMMING LANGUAGE

3.1 Problem 1: Sum and Maximum

The �rst problem is stated as follows:

Given an N -element array of natural numbers, write a program to compute
the sum and the maximum of the elements in the array.

We assume N ≥ 0 and a[i] ≥ 0 for 0 ≤ i < N , as precondition, and we have to prove the
following postcondition:

sum ≤ N ×max.

In a �le max_sum.mlw, we start a new module:

module MaxAndSum

We are obviously needing arithmetic, so we import the corresponding theory, exactly as
we would do within a theory de�nition:

use import int.Int

We are also going to use references and arrays from Why3ML's standard library, so we
import the corresponding modules, with a similar declaration:

use import module ref.Ref

use import module array.Array

The additional keyword module means that we are looking for .mlw �les from the standard
library (namely ref.mlw and array.mlw here), instead of .why �les. Modules Ref and
Array respectively provide a type ref 'a for references and a type array 'a for arrays
(see Chapter 7), together with useful operations and traditional syntax.

We are now in position to de�ne a program function max_sum. A function de�nition is
introduced with the keyword let. In our case, it introduces a function with two arguments,
an array a and its size n:

let max_sum (a: array int) (n: int) = ...

(There is a function length to get the size of an array but we add this extra parameter n
to stay close to the original problem statement.) The function body is a Hoare triple, that
is a precondition, a program expression, and a postcondition.

let max_sum (a: array int) (n: int) =

{ 0 <= n = length a /\ forall i:int. 0 <= i < n -> a[i] >= 0 }

... expression ...

{ let (sum, max) = result in sum <= n * max }

The precondition expresses that n is non-negative and is equal to the length of a (this
will be needed for veri�cation conditions related to array bound checking), and that all
elements of a are non-negative. The postcondition assumes that the value returned by the
function, denoted result, is a pair of integers, and decomposes it as the pair (sum, max)

to express the required property.
We are now left with the function body itself, that is a code computing the sum and

the maximum of all elements in a. With no surpise, it is as simple as introducing two local
references

let sum = ref 0 in

let max = ref 0 in

3.1. PROBLEM 1: SUM AND MAXIMUM 27

module MaxAndSum

use import int.Int

use import module ref.Ref

use import module array.Array

let max_sum (a: array int) (n: int) =

{ 0 <= n = length a /\ forall i:int. 0 <= i < n -> a[i] >= 0 }

let sum = ref 0 in

let max = ref 0 in

for i = 0 to n - 1 do

invariant { !sum <= i * !max }

if !max < a[i] then max := a[i];

sum := !sum + a[i]

done;

(!sum, !max)

{ let (sum, max) = result in sum <= n * max }

end

Figure 3.1: Solution for VSTTE'10 competition problem 1.

scanning the array with a for loop, updating max and sum

for i = 0 to n - 1 do

if !max < a[i] then max := a[i];

sum := !sum + a[i]

done;

and �nally returning the pair of the values contained in sum and max:

(!sum, !max)

This completes the code for function max_sum. As such, it cannot be proved correct, since
the loop is still lacking a loop invariant. In this case, the loop invariant is as simple as
!sum <= i * !max, since the postcondition only requires to prove sum <= n * max. The
loop invariant is introduced with the keyword invariant, immediately after the keyword
do.

for i = 0 to n - 1 do

invariant { !sum <= i * !max }

...

done

There is no need to introduce a variant, as the termination of a for loop is automatically
guaranteed. This completes module MaxAndSum. Figure 3.1 shows the whole code. We can
now proceed to its veri�cation. Running why3ml, or better why3ide, on �le max_sum.mlw

will show a single veri�cation condition with name WP_parameter_max_sum. Discharging
this veri�cation condition with an automated theorem prover will not succeed, most likely,
as it involves non-linear arithmetic. Repeated applications of goal splitting and calls to

28 CHAPTER 3. THE WHY3ML PROGRAMMING LANGUAGE

SMT solvers (within why3ide) will typically leave a single, unsolved goal, which reduces
to proving the following sequent:

s ≤ i×max, max < a[i] ` s+ a[i] ≤ (i+ 1)× a[i].

This is easily discharged using an interactive proof assistant such as Coq, and thus com-
pletes the veri�cation.

3.2 Problem 2: Inverting an Injection

The second problem is stated as follows:

Invert an injective array A on N elements in the subrange from 0 to N − 1,
i.e., the output array B must be such that B[A[i]] = i for 0 ≤ i < N .

We may assume that A is surjective and we have to prove that the resulting array is also
injective. The code is immediate, since it is as simple as

for i = 0 to n - 1 do b[a[i]] <- i done

so it is more a matter of speci�cation and of getting the proof done with as much au-
tomation as possible. In a new �le, we start a new module and we import arithmetic and
arrays:

module InvertingAnInjection

use import int.Int

use import module array.Array

It is convenient to introduce predicate de�nitions for the properties of being injective and
surjective. These are purely logical declarations:

predicate injective (a: array int) (n: int) =

forall i j: int. 0 <= i < n -> 0 <= j < n -> i <> j -> a[i] <> a[j]

predicate surjective (a: array int) (n: int) =

forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j] = i)

It is also convenient to introduce the predicate �being in the subrange from 0 to n− 1�:

predicate range (a: array int) (n: int) =

forall i: int. 0 <= i < n -> 0 <= a[i] < n

Using these predicates, we can formulate the assumption that any injective array of size n
within the range 0..n− 1 is also surjective:

lemma injective_surjective:

forall a: array int, n: int.

injective a n -> range a n -> surjective a n

We declare it as a lemma rather than as an axiom, since it is actually provable. It requires
induction and can be proved using the Coq proof assistant for instance. Finally we can give
the code a speci�cation, with a loop invariant which simply expresses the values assigned
to array b so far:

3.3. PROBLEM 3: SEARCHING A LINKED LIST 29

module InvertingAnInjection

use import int.Int

use import module array.Array

predicate injective (a: array int) (n: int) =

forall i j: int. 0 <= i < n -> 0 <= j < n -> i <> j -> a[i] <> a[j]

predicate surjective (a: array int) (n: int) =

forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j] = i)

predicate range (a: array int) (n: int) =

forall i: int. 0 <= i < n -> 0 <= a[i] < n

lemma injective_surjective:

forall a: array int, n: int.

injective a n -> range a n -> surjective a n

let inverting (a: array int) (b: array int) (n: int) =

{ 0 <= n = length a = length b /\ injective a n /\ range a n }

for i = 0 to n - 1 do

invariant { forall j: int. 0 <= j < i -> b[a[j]] = j }

b[a[i]] <- i

done

{ injective b n }

end

Figure 3.2: Solution for VSTTE'10 competition problem 2.

let inverting (a: array int) (b: array int) (n: int) =

{ 0 <= n = length a = length b /\ injective a n /\ range a n }

for i = 0 to n - 1 do

invariant { forall j: int. 0 <= j < i -> b[a[j]] = j }

b[a[i]] <- i

done

{ injective b n }

Here we chose to have array b as argument; returning a freshly allocated array would be
equally simple. The whole module is given Figure 3.2. The veri�cation conditions for
function inverting are easily discharged automatically, thanks to the lemma.

3.3 Problem 3: Searching a Linked List

The third problem is stated as follows:

Given a linked list representation of a list of integers, �nd the index of the �rst
element that is equal to 0.

More precisely, the speci�cation says

30 CHAPTER 3. THE WHY3ML PROGRAMMING LANGUAGE

You have to show that the program returns an index i equal to the length of
the list if there is no such element. Otherwise, the i-th element of the list must
be equal to 0, and all the preceding elements must be non-zero.

Since the list is not mutated, we can use the algebraic data type of polymorphic lists from
Why3's standard library, de�ned in theory list.List. It comes with other handy theories:
list.Length, which provides a function length, and list.Nth, which provides a function
nth for the n-th element of a list. The latter returns an option type, depending on whether
the index is meaningful or not.

module SearchingALinkedList

use import int.Int

use export list.List

use export list.Length

use export list.Nth

It is helpful to introduce two predicates: a �rst one for a successful search,

predicate zero_at (l: list int) (i: int) =

nth i l = Some 0 /\ forall j:int. 0 <= j < i -> nth j l <> Some 0

and another for a non-successful search,

predicate no_zero (l: list int) =

forall j:int. 0 <= j < length l -> nth j l <> Some 0

We are now in position to give the code for the search function. We write it as a recursive
function search that scans a list for the �rst zero value:

let rec search (i: int) (l: list int) = match l with

| Nil -> i

| Cons x r -> if x = 0 then i else search (i+1) r

end

Passing an index i as �rst argument allows to perform a tail call. A simpler code (yet
less e�cient) would return 0 in the �rst branch and 1 + search ... in the second one,
avoiding the extra argument i.

We �rst prove the termination of this recursive function. It amounts to give it a
variant, that is an term integer term which stays non-negative and strictly decreases at
each recursive call. Here it is as simple as the length of l:

let rec search (i: int) (l: list int) variant { length l } = ...

(It is worth pointing out that variants are not limited to natural numbers. Any other type
equipped with a well-founded order relation can be used instead.) There is no precondition
for function search. The postcondition expresses that either a zero value is found, and
consequently the value returned is bounded accordingly,

i <= result < i + length l /\ zero_at l (result - i)

or no zero value was found, and thus the returned value is exactly i plus the length of l:

result = i + length l /\ no_zero l

3.3. PROBLEM 3: SEARCHING A LINKED LIST 31

module SearchingALinkedList

use import int.Int

use export list.List

use export list.Length

use export list.Nth

predicate zero_at (l: list int) (i: int) =

nth i l = Some 0 /\ forall j:int. 0 <= j < i -> nth j l <> Some 0

predicate no_zero (l: list int) =

forall j:int. 0 <= j < length l -> nth j l <> Some 0

let rec search (i: int) (l: list int) variant { length l } =

{}

match l with

| Nil -> i

| Cons x r -> if x = 0 then i else search (i+1) r

end

{ (i <= result < i + length l /\ zero_at l (result - i))

\/

(result = i + length l /\ no_zero l) }

let search_list (l: list int) =

{ }

search 0 l

{ (0 <= result < length l /\ zero_at l result)

\/

(result = length l /\ no_zero l) }

end

Figure 3.3: Solution for VSTTE'10 competition problem 3.

Solving the problem is simply a matter of calling search with 0 as �rst argument. The
code is given Figure 3.3. The veri�cation conditions are all discharged automatically.

Alternatively, we can implement the search with a while loop. To do this, we need to
import references from the standard library, together with theory list.HdTl which de�nes
function hd and tl over lists.

use import module ref.Ref

use import list.HdTl

Being partial functions, hd and tl return options. For the purpose of our code, though, it
is simpler to have functions which do not return options, but have preconditions instead.
Such a function head is de�ned as follows:

let head (l: list 'a) =

{ l <> Nil }

match l with Nil -> absurd | Cons h _ -> h end

{ hd l = Some result }

32 CHAPTER 3. THE WHY3ML PROGRAMMING LANGUAGE

The program construct absurd denotes an unreachable piece of code. It generates the
veri�cation condition false, which is here provable using the precondition (the list cannot
be Nil). Function tail is de�ned similarly:

let tail (l : list 'a) =

{ l <> Nil }

match l with Nil -> absurd | Cons _ t -> t end

{ tl l = Some result }

Using head and tail, it is straightforward to implement the search as a while loop. It
uses a local reference i to store the index and another local reference s to store the list
being scanned. As long as s is not empty and its head is not zero, it increments i and
advances in s using function tail.

let search_loop l =

{ }

let i = ref 0 in

let s = ref l in

while !s <> Nil && head !s <> 0 do

invariant { ... }

variant { length !s }

i := !i + 1;

s := tail !s

done;

!i

{ ... same postcondition as search_list ... }

The postcondition is exactly the same as for function search_list. The termination of
the while loop is ensured using a variant, exactly as for a recursive function. Such a
variant must strictly decrease at each execution of the loop body. The reader is invited to
�gure out the loop invariant.

3.4 Problem 4: N-Queens

The fourth problem is probably the most challenging one. We have to verify the implemen-
tation of a program which solves the N -queens puzzle: place N queens on an N ×N chess
board so that no queen can capture another one with a legal move. The program should
return a placement if there is a solution and indicates that there is no solution otherwise.
A placement is a N -element array which assigns the queen on row i to its column. Thus
we start our module by importing arithmetic and arrays:

module NQueens

use import int.Int

use import module array.Array

The code is a simple backtracking algorithm, which tries to put a queen on each row of the
chess board, one by one (there is basically no better way to solve the N -queens puzzle).
A building block is a function which checks whether the queen on a given row may attack
another queen on a previous row. To verify this function, we �rst de�ne a more elementary
predicate, which expresses that queens on row pos and q do no attack each other:

3.4. PROBLEM 4: N-QUEENS 33

predicate consistent_row (board: array int) (pos: int) (q: int) =

board[q] <> board[pos] /\

board[q] - board[pos] <> pos - q /\

board[pos] - board[q] <> pos - q

Then it is possible to de�ne the consistency of row pos with respect to all previous rows:

predicate is_consistent (board: array int) (pos: int) =

forall q:int. 0 <= q < pos -> consistent_row board pos q

Implementing a function which decides this predicate is another matter. In order for it to
be e�cient, we want to return False as soon as a queen attacks the queen on row pos.
We use an exception for this purpose and it carries the row of the attacking queen:

exception Inconsistent int

The check is implemented by a function check_is_consistent, which takes the board and
the row pos as arguments, and scans rows from 0 to pos-1 looking for an attacking queen.
As soon as one is found, the exception is raised. It is caught immediately outside the loop
and False is returned. Whenever the end of the loop is reached, True is returned.

let check_is_consistent (board: array int) (pos: int) =

{ 0 <= pos < length board }

try

for q = 0 to pos - 1 do

invariant { forall j:int. 0 <= j < q -> consistent_row board pos j }

let bq = board[q] in

let bpos = board[pos] in

if bq = bpos then raise (Inconsistent q);

if bq - bpos = pos - q then raise (Inconsistent q);

if bpos - bq = pos - q then raise (Inconsistent q)

done;

True

with Inconsistent q ->

assert { not (consistent_row board pos q) };

False

end

{ result=True <-> is_consistent board pos }

The assertion in the exception handler is a cut for SMT solvers. This �rst part of the
solution is given Figure 3.4.

We now proceed with the veri�cation of the backtracking algorithm. The speci�cation
requires us to de�ne the notion of solution, which is straightforward using the predicate
is_consistent above. However, since the algorithm will try to complete a given partial
solution, it is more convenient to de�ne the notion of partial solution, up to a given row.
It is even more convenient to split it in two predicates, one related to legal column values
and another to consistency of rows:

predicate is_board (board: array int) (pos: int) =

forall q:int. 0 <= q < pos -> 0 <= board[q] < length board

predicate solution (board: array int) (pos: int) =

is_board board pos /\

34 CHAPTER 3. THE WHY3ML PROGRAMMING LANGUAGE

module NQueens

use import int.Int

use import module array.Array

predicate consistent_row (board: array int) (pos: int) (q: int) =

board[q] <> board[pos] /\

board[q] - board[pos] <> pos - q /\

board[pos] - board[q] <> pos - q

predicate is_consistent (board: array int) (pos: int) =

forall q:int. 0 <= q < pos -> consistent_row board pos q

exception Inconsistent int

let check_is_consistent (board: array int) (pos: int) =

{ 0 <= pos < length board }

try

for q = 0 to pos - 1 do

invariant { forall j:int. 0 <= j < q -> consistent_row board pos j }

let bq = board[q] in

let bpos = board[pos] in

if bq = bpos then raise (Inconsistent q);

if bq - bpos = pos - q then raise (Inconsistent q);

if bpos - bq = pos - q then raise (Inconsistent q)

done;

True

with Inconsistent q ->

assert { not (consistent_row board pos q) };

False

end

{ result=True <-> is_consistent board pos }

Figure 3.4: Solution for VSTTE'10 competition problem 4 (1/2).

forall q:int. 0 <= q < pos -> is_consistent board q

The algorithm will not mutate the partial solution it is given and, in case of a search failure,
will claim that there is no solution extending this pre�x. For this reason, we introduce a
predicate comparing two chess boards for equality up to a given row:

predicate eq_board (b1 b2: array int) (pos: int) =

forall q:int. 0 <= q < pos -> b1[q] = b2[q]

The search itself makes use of an exception to signal a successful search:

exception Solution

The backtracking code is a recursive function bt_queens which takes the chess board, its
size, and the starting row for the search. The termination is ensured by the obvious variant
n-pos.

let rec bt_queens (board: array int) (n: int) (pos: int) variant {n-pos} =

3.4. PROBLEM 4: N-QUEENS 35

The precondition relates board, pos, and n and requires board to be a solution up to pos:

{ length board = n /\ 0 <= pos <= n /\ solution board pos }

'Init:

We place a code mark 'Init immediately after the precondition to be able to refer to the
value of board in the pre-state. Whenever we reach the end of the chess board, we have
found a solution and we signal it using exception Solution:

if pos = n then raise Solution;

Otherwise we scan all possible positions for the queen on row pos with a for loop:

for i = 0 to n - 1 do

The loop invariant states that we have not modi�ed the solution pre�x so far, and that we
have not found any solution that would extend this pre�x with a queen on row pos at a
column below i:

invariant {

eq_board board (at board 'Init) pos /\

forall b:array int. length b = n -> is_board b n ->

eq_board board b pos -> 0 <= b[pos] < i -> not (solution b n) }

Then we assign column i to the queen on row pos and we check for a possible attack with
check_is_consistent. If not, we call bt_queens recursively on the next row.

board[pos] <- i;

if check_is_consistent board pos then bt_queens board n (pos + 1)

done

This completes the loop and function bt_queens as well. The postcondition is twofold:
either the function exits normally and then there is no solution extending the pre�x in
board, which has not been modi�ed; or the function raises Solution and we have a solution
in board.

{ eq_board board (old board) pos /\

forall b:array int. length b = n -> is_board b n ->

eq_board board b pos -> not (solution b n) }

| Solution ->

{ solution board n }

Solving the puzzle is a simple call to bt_queens, starting the search on row 0. The
postcondition is also twofold, as for bt_queens, yet slightly simpler.

let queens (board: array int) (n: int) =

{ 0 <= length board = n }

bt_queens board n 0

{ forall b:array int. length b = n -> is_board b n -> not (solution b n) }

| Solution -> { solution board n }

This second part of the solution is given Figure 3.5. With the help of a few auxiliary
lemmas � not given here but available from Why3's sources � the veri�cation conditions
are all discharged automatically, including the veri�cation of the lemmas themselves.

36 CHAPTER 3. THE WHY3ML PROGRAMMING LANGUAGE

predicate is_board (board: array int) (pos: int) =

forall q:int. 0 <= q < pos -> 0 <= board[q] < length board

predicate solution (board: array int) (pos: int) =

is_board board pos /\

forall q:int. 0 <= q < pos -> is_consistent board q

predicate eq_board (b1 b2: array int) (pos: int) =

forall q:int. 0 <= q < pos -> b1[q] = b2[q]

exception Solution

let rec bt_queens (board: array int) (n: int) (pos: int) variant { n - pos } =

{ length board = n /\ 0 <= pos <= n /\ solution board pos }

'Init:

if pos = n then raise Solution;

for i = 0 to n - 1 do

invariant {

eq_board board (at board 'Init) pos /\

forall b:array int. length b = n -> is_board b n ->

eq_board board b pos -> 0 <= b[pos] < i -> not (solution b n) }

board[pos] <- i;

if check_is_consistent board pos then bt_queens board n (pos + 1)

done

{ (* no solution *)

eq_board board (old board) pos /\

forall b:array int. length b = n -> is_board b n ->

eq_board board b pos -> not (solution b n) }

| Solution ->

{ (* a solution *)

solution board n }

let queens (board: array int) (n: int) =

{ 0 <= length board = n }

bt_queens board n 0

{ forall b:array int. length b = n -> is_board b n -> not (solution b n) }

| Solution -> { solution board n }

end

Figure 3.5: Solution for VSTTE'10 competition problem 4 (2/2).

3.5. PROBLEM 5: AMORTIZED QUEUE 37

3.5 Problem 5: Amortized Queue

The last problem consists in verifying the implementation of a well-known purely applica-
tive data structure for queues. A queue is composed of two lists, front and rear. We push
elements at the head of list rear and pop them o� the head of list front. We maintain
that the length of front is always greater or equal to the length of rear. (See for instance
Okasaki's Purely Functional Data Structures [12] for more details.)

We have to implement operations empty, head, tail, and enqueue over this data type,
to show that the invariant over lengths is maintained, and �nally

to show that a client invoking these operations observes an abstract queue
given by a sequence.

In a new module, we import arithmetic and theory list.ListRich, a combo theory which
imports all list operations we will require: length, reversal, and concatenation.

module AmortizedQueue

use import int.Int

use export list.ListRich

The queue data type is naturally introduced as a polymorphic record type. The two list
lengths are explicitly stored, for better e�ciency.

type queue 'a = {| front: list 'a; lenf: int;

rear : list 'a; lenr: int; |}

We start with the de�nition of the data type invariant, as a predicate inv. It makes use
of the ability to chain several equalities and inequalities.

predicate inv (q: queue 'a) =

length q.front = q.lenf >= length q.rear = q.lenr

For the purpose of the speci�cation, it is convenient to introduce a function sequence

which builds the sequence of elements of a queue, that is the front list concatenated to
reversed rear list.

function sequence (q: queue 'a) : list 'a =

q.front ++ reverse q.rear

It is worth pointing out that this function will only be used in speci�cations. We start
with the easiest operation: building the empty queue.

let empty () =

{}

{| front = Nil; lenf = 0; rear = Nil; lenr = 0 |} : queue 'a

{ inv result /\ sequence result = Nil }

The postcondition is twofold: the returned queue satis�es its invariant and represents the
empty sequence. Note the cast to type queue 'a. It is required, for the type checker not
to complain about an unde�ned type variable.

The next operation is head, which returns the �rst element from a given queue q. It
naturally requires the queue to be non empty, which is conveniently expressed as sequence
q not being Nil.

38 CHAPTER 3. THE WHY3ML PROGRAMMING LANGUAGE

let head (q: queue 'a) =

{ inv q /\ sequence q <> Nil }

match q.front with

| Nil -> absurd

| Cons x _ -> x

end

{ hd (sequence q) = Some result }

Note the presence of the invariant in the precondition, which is required to prove the
absurdity of the �rst branch (if q.front is Nil, then so should be sequence q).

The next operation is tail, which removes the �rst element from a given queue. This
is more subtle than head, since we may have to re-structure the queue to maintain the
invariant. Since we will have to perform a similar operation when implementation operation
enqueue, it is a good idea to introduce a smart constructor create which builds a queue
from two lists, while ensuring the invariant. The list lengths are also passed as arguments,
to avoid unnecessary computations.

let create (f: list 'a) (lf: int) (r: list 'a) (lr: int) =

{ lf = length f /\ lr = length r }

if lf >= lr then

{| front = f; lenf = lf; rear = r; lenr = lr |}

else

let f = f ++ reverse r in

{| front = f; lenf = lf + lr; rear = Nil; lenr = 0 |}

{ inv result /\ sequence result = f ++ reverse r }

If the invariant already holds, it is simply a matter of building the record. Otherwise, we
empty the rear list and build a new front list as the concatenation of list f and the reversal
of list r. The principle of this implementation is that the cost of this reversal will be
amortized over all queue operations. Implementing function tail is now straightforward
and follows the structure of function head.

let tail (q: queue 'a) =

{ inv q /\ sequence q <> Nil }

match q.front with

| Nil -> absurd

| Cons _ r -> create r (q.lenf - 1) q.rear q.lenr

end

{ inv result /\ tl (sequence q) = Some (sequence result) }

The last operation is enqueue, which pushes a new element in a given queue. Reusing the
smart constructor create makes it a one line code.

let enqueue (x: 'a) (q: queue 'a) =

{ inv q }

create q.front q.lenf (Cons x q.rear) (q.lenr + 1)

{ inv result /\ sequence result = sequence q ++ Cons x Nil }

The code is given Figure 3.6. The veri�cation conditions are all discharged automatically.

3.5. PROBLEM 5: AMORTIZED QUEUE 39

module AmortizedQueue

use import int.Int

use export list.ListRich

type queue 'a = {| front: list 'a; lenf: int;

rear : list 'a; lenr: int; |}

predicate inv (q: queue 'a) =

length q.front = q.lenf >= length q.rear = q.lenr

function sequence (q: queue 'a) : list 'a =

q.front ++ reverse q.rear

let empty () =

{}

{| front = Nil; lenf = 0; rear = Nil; lenr = 0 |} : queue 'a

{ inv result /\ sequence result = Nil }

let head (q: queue 'a) =

{ inv q /\ sequence q <> Nil }

match q.front with

| Nil -> absurd

| Cons x _ -> x

end

{ hd (sequence q) = Some result }

let create (f: list 'a) (lf: int) (r: list 'a) (lr: int) =

{ lf = length f /\ lr = length r }

if lf >= lr then

{| front = f; lenf = lf; rear = r; lenr = lr |}

else

let f = f ++ reverse r in

{| front = f; lenf = lf + lr; rear = Nil; lenr = 0 |}

{ inv result /\ sequence result = f ++ reverse r }

let tail (q: queue 'a) =

{ inv q /\ sequence q <> Nil }

match q.front with

| Nil -> absurd

| Cons _ r -> create r (q.lenf - 1) q.rear q.lenr

end

{ inv result /\ tl (sequence q) = Some (sequence result) }

let enqueue (x: 'a) (q: queue 'a) =

{ inv q }

create q.front q.lenf (Cons x q.rear) (q.lenr + 1)

{ inv result /\ sequence result = sequence q ++ Cons x Nil }

end

Figure 3.6: Solution for VSTTE'10 competition problem 5.

Chapter 4

The Why3 API

This chapter is a tutorial for the users who want to link their own OCaml code with the
Why3 library. We progressively introduce the way one can use the library to build terms,
formulas, theories, proof tasks, call external provers on tasks, and apply transformations
on tasks. The complete documentation for API calls is given at URL http://why3.lri.

fr/api/.
We assume the reader has a fair knowledge of the OCaml language. Notice that the

Why3 library must be installed, see Section 8.1. The OCaml code given below is available
in the source distribution as examples/use_api.ml.

4.1 Building Propositional Formulas

The �rst step is to know how to build propositional formulas. The module Term gives a
few functions for building these. Here is a piece of OCaml code for building the formula
true ∨ false.

(* opening the Why3 library *)

open Why3

(* a ground propositional goal: true or false *)

let fmla_true : Term.term = Term.t_true

let fmla_false : Term.term = Term.t_false

let fmla1 : Term.term = Term.t_or fmla_true fmla_false

The library uses the common type term both for terms (i.e. expressions that produce a
value of some particular type) and formulas (i.e. boolean-valued expressions).

Such a formula can be printed using the module Pretty providing pretty-printers.

(* printing it *)

open Format

let () = printf "@[formula 1 is:@ %a@]@." Pretty.print_term fmla1

Assuming the lines above are written in a �le f.ml, it can be compiled using

ocamlc str.cma unix.cma nums.cma dynlink.cma \

-I +ocamlgraph -I +why3 graph.cma why.cma f.ml -o f

Running the generated executable f results in the following output.

formula 1 is: true \/ false

41

http://why3.lri.fr/api/
http://why3.lri.fr/api/
examples/use_api.ml

42 CHAPTER 4. THE WHY3 API

Let's now build a formula with propositional variables: A ∧ B → A. Propositional
variables must be declared �rst before using them in formulas. This is done as follows.

let prop_var_A : Term.lsymbol =

Term.create_psymbol (Ident.id_fresh "A") []

let prop_var_B : Term.lsymbol =

Term.create_psymbol (Ident.id_fresh "B") []

The type lsymbol is the type of function and predicate symbols (which we call logic
symbols for brevity). Then the atoms A and B must be built by the general function
for applying a predicate symbol to a list of terms. Here we just need the empty list of
arguments.

let atom_A : Term.term = Term.ps_app prop_var_A []

let atom_B : Term.term = Term.ps_app prop_var_B []

let fmla2 : Term.term =

Term.t_implies (Term.t_and atom_A atom_B) atom_A

let () = printf "@[formula 2 is:@ %a@]@." Pretty.print_term fmla2

As expected, the output is as follows.

formula 2 is: A /\ B -> A

Notice that the concrete syntax of Why3 forbids function and predicate names to start
with a capital letter (except for the algebraic type constructors which must start with
one). This constraint is not enforced when building those directly using library calls.

4.2 Building Tasks

Let's see how we can call a prover to prove a formula. As said in previous chapters, a
prover must be given a task, so we need to build tasks from our formulas. Task can be
build incrementally from an empty task by adding declaration to it, using the functions
add_*_decl of module Task. For the formula true ∨ false above, this is done as follows.

let task1 : Task.task = None (* empty task *)

let goal_id1 : Decl.prsymbol =

Decl.create_prsymbol (Ident.id_fresh "goal1")

let task1 : Task.task =

Task.add_prop_decl task1 Decl.Pgoal goal_id1 fmla1

To make the formula a goal, we must give a name to it, here "goal1". A goal name has
type prsymbol, for identi�ers denoting propositions in a theory or a task. Notice again
that the concrete syntax of Why3 requires these symbols to be capitalized, but it is not
mandatory when using the library. The second argument of add_prop_decl is the kind of
the proposition: Paxiom, Plemma or Pgoal (notice, however, that lemmas are not allowed
in tasks and can only be used in theories).

Once a task is built, it can be printed.

(* printing the task *)

let () = printf "@[task 1 is:@\n%a@]@." Pretty.print_task task1

The task for our second formula is a bit more complex to build, because the variables
A and B must be added as logic declarations in the task.

4.3. CALLING EXTERNAL PROVERS 43

(* task for formula 2 *)

let task2 = None

let task2 = Task.add_logic_decl task2 [prop_var_A, None]

let task2 = Task.add_logic_decl task2 [prop_var_B, None]

let goal_id2 = Decl.create_prsymbol (Ident.id_fresh "goal2")

let task2 = Task.add_prop_decl task2 Decl.Pgoal goal_id2 fmla2

let () = printf "@[task 2 is:@\n%a@]@." Pretty.print_task task2

The argument None is the declarations of logic symbols means that they do not have any
de�nition.

Execution of our OCaml program now outputs:

task 1 is:

theory Task

goal Goal1 : true \/ false

end

task 2 is:

theory Task

predicate A

predicate B

goal Goal2 : A /\ B -> A

end

4.3 Calling External Provers

To call an external prover, we need to access the Why con�guration �le why3.conf, as
it was built using the why3config command line tool or the Detect Provers menu of the
graphical IDE. The following API calls allow to access the content of this con�guration
�le.

(* reads the config file *)

let config : Whyconf.config = Whyconf.read_config None

(* the [main] section of the config file *)

let main : Whyconf.main = Whyconf.get_main config

(* all the provers detected, from the config file *)

let provers : Whyconf.config_prover Util.Mstr.t =

Whyconf.get_provers config

The type 'a Util.Mstr.t is a map indexed by strings. This map can provide the set of
existing provers. In the following, we directly attempt to access the prover Alt-Ergo, which
is known to be identi�ed with id "alt-ergo".

(* the [prover alt-ergo] section of the config file *)

let alt_ergo : Whyconf.config_prover =

try

Util.Mstr.find "alt-ergo" provers

with Not_found ->

eprintf "Prover alt-ergo not installed or not configured@.";

exit 0

44 CHAPTER 4. THE WHY3 API

The next step is to obtain the driver associated to this prover. A driver typically
depends on the standard theories so these should be loaded �rst.

(* builds the environment from the [loadpath] *)

let env : Env.env =

Env.create_env (Whyconf.loadpath main)

(* loading the Alt-Ergo driver *)

let alt_ergo_driver : Driver.driver =

try

Driver.load_driver env alt_ergo.Whyconf.driver

with e ->

eprintf "Failed to load driver for alt-ergo: %a@."

Exn_printer.exn_printer e;

exit 1

We are now ready to call the prover on the tasks. This is done by a function call that
launches the external executable and waits for its termination. Here is a simple way to
proceed:

(* calls Alt-Ergo *)

let result1 : Call_provers.prover_result =

Call_provers.wait_on_call

(Driver.prove_task ~command:alt_ergo.Whyconf.command

alt_ergo_driver task1 ()) ()

(* prints Alt-Ergo answer *)

let () = printf "@[On task 1, alt-ergo answers %a@]@."

Call_provers.print_prover_result result1

This way to call a prover is in general too naive, since it may never return if the prover runs
without time limit. The function prove_task has two optional parameters: timelimit

is the maximum allowed running time in seconds, and memlimit is the maximum allowed
memory in megabytes. The type prover_result is a record with three �elds:

• pr_answer: the prover answer, explained below;

• pr_output: the output of the prover, i.e. both standard output and the standard
error of the process (a redirection in why3.conf is required);

• pr_time : the time taken by the prover, in seconds.

A pr_answer is a sum of several kind of answers:

• Valid: the task is valid according to the prover.

• Invalid: the task is invalid.

• Timeout: the prover exceeds the time or memory limit.

• Unknown msg: the prover can't determine if the task is valid; the string parameter
msg indicates some extra information.

• Failure msg: the prover reports a failure, i.e. it was unable to read correctly its
input task.

4.4. BUILDING TERMS 45

• HighFailure: an error occurred while trying to call the prover, or the prover answer
was not understood (i.e. none of the given regular expressions in the driver �le
matches the output of the prover).

Here is thus another way of calling the Alt-Ergo prover, on our second task.

let result2 : Call_provers.prover_result =

Call_provers.wait_on_call

(Driver.prove_task ~command:alt_ergo.Whyconf.command

~timelimit:10

alt_ergo_driver task2 ()) ()

let () =

printf "@[On task 2, alt-ergo answers %a in %5.2f seconds@."

Call_provers.print_prover_answer

result1.Call_provers.pr_answer

result1.Call_provers.pr_time

The output of our program is now as follows.

On task 1, alt-ergo answers Valid (0.01s)

On task 2, alt-ergo answers Valid in 0.01 seconds

4.4 Building Terms

An important feature of the functions for building terms and formulas is that they statically
guarantee that only well-typed terms can be constructed.

Here is the way we build the formula 2 + 2 = 4. The main di�culty is to access the
internal identi�er for addition: it must be retrieved from the standard theory Int of the
�le int.why (see Chap 6).

let two : Term.term = Term.t_const (Term.ConstInt "2")

let four : Term.term = Term.t_const (Term.ConstInt "4")

let int_theory : Theory.theory =

Env.find_theory env ["int"] "Int"

let plus_symbol : Term.lsymbol =

Theory.ns_find_ls int_theory.Theory.th_export ["infix +"]

let two_plus_two : Term.term =

Term.t_app_infer plus_symbol [two;two]

let fmla3 : Term.term = Term.t_equ two_plus_two four

An important point to notice as that when building the application of + to the arguments,
it is checked that the types are correct. Indeed the constructor t_app_infer infers the
type of the resulting term. One could also provide the expected type as follows.

let two_plus_two : Term.term =

Term.fs_app plus_symbol [two;two] Ty.ty_int

When building a task with this formula, we need to declare that we use theory Int:

let task3 = None

let task3 = Task.use_export task3 int_theory

let goal_id3 = Decl.create_prsymbol (Ident.id_fresh "goal3")

let task3 = Task.add_prop_decl task3 Decl.Pgoal goal_id3 fmla3

46 CHAPTER 4. THE WHY3 API

4.5 Building Quanti�ed Formulas

To illustrate how to build quanti�ed formulas, let us consider the formula ∀x : int.x∗x ≥ 0.
The �rst step is to obtain the symbols from Int.

let zero : Term.term = Term.t_const (Term.ConstInt "0")

let mult_symbol : Term.lsymbol =

Theory.ns_find_ls int_theory.Theory.th_export ["infix *"]

let ge_symbol : Term.lsymbol =

Theory.ns_find_ls int_theory.Theory.th_export ["infix >="]

The next step is to introduce the variable x with the type int.

let var_x : Term.vsymbol =

Term.create_vsymbol (Ident.id_fresh "x") Ty.ty_int

The formula x ∗ x ≥ 0 is obtained as in the previous example.

let x : Term.term = Term.t_var var_x

let x_times_x : Term.term = Term.t_app_infer mult_symbol [x;x]

let fmla4_aux : Term.term = Term.ps_app ge_symbol [x_times_x;zero]

To quantify on x, we use the appropriate smart constructor as follows.

let fmla4 : Term.term = Term.t_forall_close [var_x] [] fmla4_aux

4.6 Building Theories

[TO BE COMPLETED]

4.7 Applying transformations

[TO BE COMPLETED]

4.8 Writing new functions on term

[TO BE COMPLETED]

Part II

Reference Manual

47

Chapter 5

Language Reference

This chapter gives the grammar and semantics for Why3 and Why3ML input �les.

5.1 Lexical conventions

Lexical conventions are common to Why3 and Why3ML.

Comments. Comments are enclosed by (* and *) and can be nested.

Strings. Strings are enclosed in double quotes ("). Double quotes can be inserted in
strings using the backslash character (\). In the following, strings are referred to with the
non-terminal string .

Identi�ers. The syntax distinguishes lowercase and uppercase identi�ers and, similarly,
lowercase and uppercase quali�ed identi�ers.

lalpha ::= a - z | _

ualpha ::= A - Z

alpha ::= lalpha | ualpha

lident ::= lalpha (alpha | digit | ')∗

uident ::= ualpha (alpha | digit | ')∗

ident ::= lident | uident

lqualid ::= lident | uqualid . lident

uqualid ::= uident | uqualid . uident

Constants. The syntax for constants is given in Figure 5.1. Integer and real constants
have arbitrary precision. Integer constants may be given in base 16, 10, 8 or 2. Real
constants may be given in base 16 or 10.

Operators. Pre�x and in�x operators are built from characters organized in four cate-
gories (op-char-1 to op-char-4).

49

50 CHAPTER 5. LANGUAGE REFERENCE

digit ::= 0 - 9

hex-digit ::= digit | a - f | A - F

oct-digit ::= 0 - 7

bin-digit ::= 0 | 1

integer ::= digit (digit | _)∗ decimal
| (0x | 0X) hex-digit (hex-digit | _)∗ hexadecimal
| (0o | 0O) oct-digit (oct-digit | _)∗ octal
| (0b | 0B) bin-digit (bin-digit | _)∗ binary

real ::= digit+ exponent decimal
| digit+ . digit∗ exponent?

| digit∗ . digit+ exponent?

| (0x | 0X) hex-real h-exponent hexadecimal

hex-real ::= hex-digit+

| hex-digit+ . hex-digit∗

| hex-digit∗ . hex-digit+

exponent ::= (e | E) (- | +)? digit+

h-exponent ::= (p | P) (- | +)? digit+

Figure 5.1: Syntax for constants.

op-char-1 ::= = | < | > | ~

op-char-2 ::= + | -

op-char-3 ::= * | / | %

op-char-4 ::= ! | $ | & | ? | @ | ^ | . | : | | | #

op-char ::= op-char-1 | op-char-2 | op-char-3 | op-char-4

in�x-op-1 ::= op-char∗ op-char-1 op-char∗

in�x-op ::= op-char+

pre�x-op ::= op-char+

bang-op ::= ! op-char-4∗ | ? op-char-4∗

In�x operators are classi�ed into 4 categories, according to the characters they are built
from:

• level 4: operators containing only characters from op-char-4 ;

• level 3: those containing characters from op-char-3 or op-char-4 ;

• level 2: those containing characters from op-char-2, op-char-3 or op-char-4 ;

• level 1: all other operators (non-terminal in�x-op-1).

Labels. Identi�ers, terms, formulas, program expressions can all be labeled, either with
a string, or with a location tag.

5.2. WHY3 LANGUAGE 51

label ::= string

| # �lename digit+ digit+ digit+ #

�lename ::= string

A location tag consists of a �le name, a line number, and starting and ending characters.

5.2 Why3 Language

Terms. The syntax for terms is given in Figure 5.2. The various constructs have the
following priorities and associativities, from lowest to greatest priority:

construct associativity

if then else / let in �
label �
cast �
in�x-op level 1 left
in�x-op level 2 left
in�x-op level 3 left
in�x-op level 4 left
pre�x-op �
function application left
brackets / ternary brackets �
bang-op �

Note the curry�ed syntax for function application, though partial application is not
allowed (rejected at typing).

Type Expressions. The syntax for type expressions is the following:

type ::= lqualid type∗ type symbol
| ' lident type variable
| () empty tuple type
| (type (, type)+) tuple type
| (type) parentheses

Built-in types are int, real, and tuple types. Note that the syntax for type expressions
notably di�ers from the usual ML syntax (e.g. the type of polymorphic lists is written
list 'a, not 'a list).

Formulas. The syntax for formulas is given Figure 5.3. The various constructs have the
following priorities and associativities, from lowest to greatest priority:

52 CHAPTER 5. LANGUAGE REFERENCE

term ::= integer integer constant
| real real constant
| lqualid symbol
| pre�x-op term

| bang-op term

| term in�x-op term

| term [term] brackets
| term [term <- term] ternary brackets
| lqualid term+ function application
| if formula then term

else term conditional
| let pattern = term in term local binding
| match term (, term)∗ with

(| term-case)+ end pattern matching
| (term (, term)+) tuple
| {| �eld-value+ |} record
| term . lqualid �eld access
| {| term with �eld-value+ |} �eld update
| term : type cast
| label term label
| ' uident code mark
| (term) parentheses

term-case ::= pattern -> term

pattern ::= pattern | pattern or pattern
| pattern , pattern tuple
| _ catch-all
| lident variable
| uident pattern∗ constructor
| (pattern) parentheses
| pattern as lident binding

�eld-value ::= lqualid = term ;

Figure 5.2: Syntax for terms.

5.2. WHY3 LANGUAGE 53

formula ::= true | false

| formula -> formula implication
| formula <-> formula equivalence
| formula /\ formula conjunction
| formula && formula asymmetric conjunction
| formula \/ formula disjunction
| formula || formula asymmetric disjunction
| not formula negation
| lqualid symbol
| pre�x-op term

| term in�x-op term

| lqualid term+ predicate application
| if formula then formula

else formula conditional
| let pattern = term in formula local binding
| match term (, term)+ with

(| formula-case)+ end pattern matching
| quanti�er binders (, binders)∗

triggers? . formula quanti�er
| label formula label
| (formula) parentheses

quanti�er ::= forall | exists

binders ::= lident+ : type

triggers ::= [trigger (| trigger)∗]

trigger ::= tr-term (, tr-term)∗

tr-term ::= term | formula

formula-case ::= pattern -> formula

Figure 5.3: Syntax for formulas.

construct associativity

if then else / let in �
label �
-> / <-> right
\/ / || right
/\ / && right
not �
in�x level 1 left
in�x level 2 left
in�x level 3 left
in�x level 4 left
pre�x �

Note that in�x symbols of level 1 include equality (=) and disequality (<>).
Notice that there are two symbols for the conjunction: and and &&, and similarly for

disjunction. There are logically equivalent, but may be treated slightly di�erently by some

54 CHAPTER 5. LANGUAGE REFERENCE

transformation, e.g. the split transformation transforms A and B into subgoals A and
B, whereas it transforms A && B into subgoals A and A→ B.

Theories. The syntax for theories is given Figure 5.4.

Files. A Why3 input �le is a (possibly empty) list of theories.

�le ::= theory∗

5.2. WHY3 LANGUAGE 55

theory ::= theory uident label∗ decl∗ end

decl ::= type type-decl (with type-decl)∗

| function function-decl (with logic-decl)∗

| predicate predicate-decl (with logic-decl)∗

| inductive inductive-decl (with inductive-decl)∗

| axiom ident : formula

| lemma ident : formula

| goal ident : formula

| use imp-exp tqualid (as uident-opt)?

| clone imp-exp tqualid (as uident-opt)? subst?

| namespace import? uident-opt decl∗ end

type-decl ::= lident label∗ (' lident label∗)∗ type-defn

type-defn ::= abstract type
| = type alias type
| = |? type-case (| type-case)∗ algebraic type
| = {| record-�eld (; record-�eld)∗ |} record type

type-case ::= uident label∗ type-param∗

record-�eld ::= lident label∗ : type

logic-decl ::= function-decl

| predicate-decl

function-decl ::= lident label∗ type-param∗ : type

| lident label∗ type-param∗ : type = term

predicate-decl ::= lident label∗ type-param∗

| lident label∗ type-param∗ = formula

type-param ::= ' lident

| lqualid

| (lident+ : type)

| (type (, type)∗)

| ()

inductive-decl ::= lident label∗ type-param∗ =

|? ind-case (| ind-case)∗

ind-case ::= ident label∗ : formula

imp-exp ::= (import | export)?

uident-opt ::= uident | _

subst ::= with (, subst-elt)+

subst-elt ::= type lqualid = lqualid

| function lqualid = lqualid

| predicate lqualid = lqualid

| namespace (uqualid | .) = (uqualid | .)
| lemma uqualid

| goal uqualid

tqualid ::= uident | ident (. ident)∗ . uident

Figure 5.4: Syntax for theories.

56 CHAPTER 5. LANGUAGE REFERENCE

type-v ::= type | (type-v) parentheses
| type-v -> type-c

| type-v-binder -> type-c

type-v-binder ::= lident label∗ : type-v

type-v-param ::= (type-v-binder)

type-c ::= type-v

| pre type-v e�ect post

e�ect ::= reads? writes? raises?

reads ::= reads tr-term+

writes ::= writes tr-term+

raises ::= raises uqualid+

pre ::= annotation

post ::= annotation post-exn∗

post-exn ::= | uqualid -> annotation

annotation ::= {} | { formula }

Figure 5.5: Syntax for program types.

5.3 Why3ML Language

Types. The syntax for program types is given in �gure 5.5.

Expressions. The syntax for program expressions is given in �gure 5.6.

Modules. The syntax for modules is given in �gure 5.7. Any declaration which is ac-
cepted in a theory is also accepted in a module. Additionally, modules can introduce
record types with mutable �elds and declarations which are speci�c to programs (global
variables, functions, exceptions).

Files. A Why3ML input �le is a (possibly empty) list of theories and modules.

�le ::= (theory | module)∗

A theory de�ned in aWhy3ML �le can only be used within that �le. If a theory is supposed
to be reused from other �les, be they Why3 orWhy3ML �les, it should be de�ned in aWhy3
�le.

5.3. WHY3ML LANGUAGE 57

expr ::= integer integer constant
| real real constant
| lqualid symbol
| pre�x-op expr

| expr in�x-op expr

| expr [expr] brackets
| expr [expr] <- expr brackets assignment
| expr [expr in�x-op-1 expr] ternary brackets
| expr expr+ function application
| fun type-v-param+ -> triple lambda abstraction
| let rec recfun (with recfun)∗ recursive functions
| if expr then expr (else expr)? conditional
| expr ; expr sequence
| loop loop-annot end in�nite loop
| while expr do loop-annot expr done while loop
| for lident = expr to-downto expr for loop

do loop-inv expr done

| assert annotation assertion
| absurd

| raise uqualid exception raising
| raise (uqualid expr)

| try expr with (| handler)+ end exception catching
| any type-c

| let pattern = expr in expr local binding
| match expr (, expr)∗ with pattern matching

(| expr-case)+ end

| (expr (, expr)+) tuple
| {| �eld-value+ |} record
| exopr . lqualid �eld access
| expr . lqualid <- expr �eld assignment
| {| expr with �eld-value+ |} �eld update
| expr : type cast
| label expr label
| ' uident : expr code mark
| (expr) parentheses

expr-case ::= pattern -> expr

�eld-value ::= lqualid = expr ;

triple ::= expr

| pre expr post Hoare triple

assert ::= assert | assume | check

to-downto ::= to | downto

loop-annot ::= loop-inv? variant?

loop-inv ::= invariant annotation

variant ::= variant { term } (with lqualid)?

Figure 5.6: Syntax for program expressions.

58 CHAPTER 5. LANGUAGE REFERENCE

module ::= module uident label∗ mdecl∗ end

mdecl ::= decl theory declaration
| type mtype-decl (with mtype-decl)∗ mutable types
| let lident label∗ pgm-defn

| let rec recfun (with recfun)∗

| val lident label∗ pgm-decl

| exception lident label∗ type?

| use imp-exp module tqualid (as uident-opt)?

| namespace import? uident-opt mdecl∗ end

mtype-decl ::= lident label∗ (' lident label∗)∗ mtype-defn

mtype-defn ::= abstract type
| = type alias type
| = |? type-case (| type-case)∗ algebraic type
| = {| mrecord-�eld (; mrecord-�eld)∗ |} record type

mrecord-�eld ::= mutable? lident label∗ : type

pgm-decl ::= : type-v

| type-v-param+ : type-c

pgm-defn ::= type-v-param+ (: type)? = triple

| = fun type-v-param+ -> triple

Figure 5.7: Syntax for modules.

Chapter 6

Standard Library: Why3 Theories

We provide here a short description of logic symbols de�ned in the standard library. Only
the most general-purpose ones are described. For more details, one should directly read
the corresponding �le, or alternatively, use the why3 with option -T and a quali�ed theory
name, for example:

> why3 -T bool.Ite

theory Ite

(* use BuiltIn *)

(* use Bool *)

function ite (b:bool) (x:'a) (y:'a) : 'a =

match b with

| True -> x

| False -> y

end

end

In the following, for each library, we describe the (main) symbols de�ned in it.

6.1 Library bool

Bool boolean data type bool with constructors True and False; operations andb, orb,
xorb, notb.

Ite polymorphic if-then-else operator written as ite.

6.2 Library int

Int basic operations +, - and *; comparison operators <, >, >= and <=.

Abs absolute value written as abs.

EuclideanDivision division and modulo, where division rounds down, written as div

and mod.

ComputerDivision division and modulo, where division rounds to zero, also written as
div and mod.

59

60 CHAPTER 6. STANDARD LIBRARY: WHY3 THEORIES

MinMax min and max operators.

6.3 Library real

Real basic operations +, -, * and /; comparison operators.

RealIn�x basic operations with alternative syntax +., -., *., /., <., >., <=. and >=.,
to allow simultaneous use of integer and real operators.

Abs absolute value written as abs.

MinMax min and max operators.

FromInt operator from_int to convert an integer to a real.

Truncate conversion operators from real to integers: truncate rounds to 0, floor rounds
down and ceil rounds up.

Square operators sqr and sqrt for square and square root.

ExpLog functions exp, log, log2, and log10.

Power function pow with two real parameters.

Trigonometry functions cos, sin, tan, and atan. Constant pi.

Hyperbolic functions cosh, sinh, tanh, acosh, asinh, atanh.

Polar functions hypot and atan2.

6.4 Library floating_point

This library provides a theory of IEEE-754 �oating-point numbers. It is inspired by [1].

Rounding type mode with 5 constants NearestTiesToEven, ToZero, Up, Down and
NearTiesToAway.

SpecialValues handling of in�nities and NaN.

GenFloat generic �oats parameterized by the maximal representable number. Functions
round, value, exact, model, predicate no_overflow.

Single instance of GenFloat for 32-bits single precision numbers.

Double instance of GenFloat for 64-bits double precision numbers.

6.5 Library array

Array polymorphic arrays, a.k.a maps. Type t parameterized by both the type of indices
and the type of data. Functions get and set to access and update arrays. Function
create_const to produce an array initialized by a given constant.

ArrayLength arrays indexed by integers and holding their length. Function length.

ArrayRich additional functions on arrays indexed by integers. Functions sub and app to
extract a sub-array and append arrays.

6.6. LIBRARY OPTION 61

6.6 Library option

Option data type option 'a with constructors None and Some.

6.7 Library list

List data type list 'a with constructors Nil and Cons.

Length function length

Mem function mem for testing for list membership.

Nth function nth for extract the n-th element.

HdTl functions hd and tl.

Append function append, concatenation of lists.

Reverse function reverse for list reversal.

Sorted predicate sorted for lists of integers.

NumOcc number of occurrences in a list.

Permut list permutations.

Induction structural induction on lists.

Map list map operator.

Chapter 7

Standard Library: Why3ML

Modules

7.1 Library ref

Ref references i.e. mutable variables: type ref 'a and functions ref for creation, (!) for
access, and (:=) for mutation

Re�nt references with additional functions incr and decr over integer references

7.2 Library array

Array polymorphic arrays (type array 'a, in�x syntax a[i] for access and a[i] ← e for
update, functions length, make, append, sub, copy, fill, and blit)

ArraySorted an array of integers is sorted (array_sorted_sub and array_sorted)

ArrayEq two arrays are identical (array_eq_sub and array_eq)

ArrayPermut two arrays are permutation of each other (permut_sub and permut)

7.3 Library queue

Queue polymorphic mutable queues (type t 'a and functions create, push, pop, top,
clear, copy, is_empty, length)

7.4 Library stack

Stack polymorphic mutable stacks (type t 'a and functions create, push, pop, top,
clear, copy, is_empty, length)

7.5 Library hashtbl

Hashtbl hash tables with monomorphic keys (type key) and polymorphic values (type t
'a of hash tables, syntax h[k] for access, functions create, clear, add, mem, find,
find_all, copy, remove, and replace)

63

64 CHAPTER 7. STANDARD LIBRARY: WHY3ML MODULES

7.6 Library string

Char

String

Chapter 8

Reference manuals for the Why3

tools

8.1 Compilation, Installation

Compilation of Why3 must start with a con�guration phase which is run as

./configure

This analyzes your current con�guration and checks if requirements hold. Compilation
requires:

• The Objective Caml compiler, version 3.10 or higher. It is available as a binary
package for most Unix distributions. For Debian-based Linux distributions, you can
install the packages

ocaml ocaml-native-compilers

It is also installable from sources, downloadable from the site http://caml.inria.

fr/ocaml/

For some tools, additional OCaml libraries are needed:

• For the IDE: the Lablgtk2 library for OCaml bindings of the gtk2 graphical library.
For Debian-based Linux distributions, you can install the packages

liblablgtk2-ocaml-dev liblablgtksourceview2-ocaml-dev

It is also installable from sources, available from the site http://wwwfun.kurims.

kyoto-u.ac.jp/soft/olabl/lablgtk.html

• For why3bench: The OCaml bindings of the sqlite3 library. For Debian-based Linux
distributions, you can install the package

libsqlite3-ocaml-dev

It is also installable from sources, available from the site http://ocaml.info/home/
ocaml_sources.html#ocaml-sqlite3

When con�guration is �nished, you can compile Why3.

65

http://caml.inria.fr/ocaml/
http://caml.inria.fr/ocaml/
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://ocaml.info/home/ocaml_sources.html#ocaml-sqlite3
http://ocaml.info/home/ocaml_sources.html#ocaml-sqlite3

66 CHAPTER 8. REFERENCE MANUALS FOR THE WHY3 TOOLS

make

Installation is performed (as super-user if needed) using

make install

Installation can be tested as follows:

1. install some external provers (see Section8.2 below)

2. run why3config �detect

3. run some examples from the distribution, e.g. you should obtain the following:

$ cd examples

$ why3replayer scottish-private-club

Info: found directory 'scottish-private-club' for the project

Opening session...[Xml warning] prolog ignored

[Reload] file '../scottish-private-club.why'

[Reload] theory 'ScottishClubProblem'

done

Progress: 4/4

1/1

Everything OK.

$ why3replayer programs/same_fringe

Info: found directory 'programs/same_fringe' for the project

Opening session...[Xml warning] prolog ignored

[Reload] file '../same_fringe.mlw'

[Reload] theory 'WP SameFringe'

[Reload] transformation split_goal for goal WP_parameter enum

[Reload] transformation split_goal for goal WP_parameter eq_enum

done

Progress: 12/12

3/3

Everything OK.

Local use, without installation

It is not mandatory to install Why3 into system directories. Why3 can be con�gured and
compiled for local use as follows:

./configure --enable-local

make

The Why3 executables are then available in the subdirectory bin/.

Installation of the Why3 library

By default, the Why3 library is not installed. It can be installed using

make byte opt

make install_lib

8.2. INSTALLATION OF EXTERNAL PROVERS 67

8.2 Installation of external provers

Why3 can use a wide range of external theorem provers. These need to be installed sep-
arately, and then Why3 needs to be con�gured to use them. There is no need to install
these provers before compiling and installing Why.

For installation of external provers, please look at the Why provers tips page http:

//why.lri.fr/provers.en.html.
For con�guring Why3 to use the provers, follow instructions given in Section 8.3.

8.3 The why3config command-line tool

.
Why3 must be con�gured to access external provers. Typically, this is done by running

either the command line tool

why3config

or using the menu

File/Detect provers

of the IDE. This must be redone each time a new prover is installed.
The provers which Why3 attempts to detect are described in the readable

con�guration �le provers-detection-data.conf of the Why3 data directory (e.g.
/usr/local/share/why3). Advanced users may try to modify this �le to add support
for detection of other provers. (In that case, please consider submitting a new prover
con�guration on the bug tracking system).

The result of provers detection is stored in the user's con�guration �le (~/.why3.conf
or, in the case of local installation, why3.conf in Why3 sources top directory). This �le
is also human-readable, and advanced users may modify it in order to experiment with
di�erent ways of calling provers, e.g. di�erent versions of the same prover, or with di�erent
options.

The provers which are typically looked for are

• Alt-Ergo [4, 6]: http://alt-ergo.lri.fr

• CVC3 [2]: http://cs.nyu.edu/acsys/cvc3/

• Coq [3]: http://coq.inria.fr

• Eprover [14]: http://www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.
html

• Gappa [11]: http://gappa.gforge.inria.fr/

• Simplify [8]: http://secure.ucd.ie/products/opensource/Simplify/

• Spass: http://www.spass-prover.org/

• Vampire: http://www.voronkov.com/vampire.cgi

• VeriT: http://www.verit-solver.org/

• Yices [9]: http://yices.csl.sri.com/, only versions 1.xx since versions 2.xx do
not support quanti�ers

http://why.lri.fr/provers.en.html
http://why.lri.fr/provers.en.html
http://alt-ergo.lri.fr
http://cs.nyu.edu/acsys/cvc3/
http://coq.inria.fr
http://www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.html
http://www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.html
http://gappa.gforge.inria.fr/
http://secure.ucd.ie/products/opensource/Simplify/
http://www.spass-prover.org/
http://www.voronkov.com/vampire.cgi
http://www.verit-solver.org/
http://yices.csl.sri.com/

68 CHAPTER 8. REFERENCE MANUALS FOR THE WHY3 TOOLS

• Z3 [7]: http://research.microsoft.com/en-us/um/redmond/projects/z3/

why3config also detects the plugins installed in the Why3 plugins directory (e.g.
/usr/local/lib/why3/plugins). A plugin must register itself as a parser, a transfor-
mation or a printer, as explained in the corresponding section.

If the user's con�guration �le is already present, why3config will only reset unset
variables to default value, but will not try to detect provers. The option �detect-provers

should be used to force Why3 to detect again the available provers and to replace them in
the con�guration �le. The option �detect-plugins will do the same for plugins.

8.4 The why3 command-line tool

Why3 is primarily used to call provers on goals contained in an input �le. By default,
such a �le must be written in Why3 language and have the extension .why. However, a
dynamically loaded plugin can register a parser for some other format of logical problems,
e.g. TPTP or SMTlib.

The why3 tool executes the following steps:

1. Parse the command line and report errors if needed.

2. Read the con�guration �le using the priority de�ned in Section 8.9.

3. Load the plugins mentioned in the con�guration. It will not stop if some plugin fails
to load.

4. Parse and typecheck the given �les using the correct parser in order to obtain a set
of Why3 theories for each �le. It uses the �lename extension or the �format option
to choose among the available parsers. The �list-format option gives the list of
registered parsers.

5. Extract the selected goals inside each of the selected theories into tasks. The goals
and theories are selected using the options -G/�goal and -T/�theory. The op-
tion -T/�theory applies to the last �le appearing on the command line, the option
-G/�goal applies to the last theory appearing on the command line. If no theories
are selected in a �le, then every theory is considered as selected. If no goals are
selected in a theory, then every goal is considered as selected.

6. Apply the transformation requested with -a/�apply-transform in their order of ap-
pearance on the command line. �list-transforms list the known transformations,
plugins can add more of them.

7. Apply the driver selected with the -D/�driver option, or the driver of the prover
selected with -P/�prover option. �list-provers lists the known provers, i.e. the
ones which appear in the con�guration �le.

8. If the option -P/�prover is given, call the selected prover on each generated task
and print the results. If the option -D/�driver is given, print each generated task
using the format speci�ed in the selected driver.

The provers can answer the following output:

Valid the goal is proved in the given context,

Unknown the prover stop by itself to search,

http://research.microsoft.com/en-us/um/redmond/projects/z3/

8.5. THE WHY3IDE GUI 69

Timeout the prover doesn't have enough time,

Failure an error occured,

Invalid the prover know the goal can't be proved

The option �bisect change the behaviors of why3. With this option, -P/�prover
and -o/�output must be given and a valid goal must be selected. The last step executed
by why3 is replaced by computing a minimal set (in the great majority of the case) of
declarations which still prove the goal. Currently it doesn't use any information provided
by the prover, it call the prover multiple time with reduced context. The minimal set of
declarations is then written in the prover syntax into a �le located in the directory given
to the -o/�output option.

8.5 The why3ide GUI

The basic usage of the GUI is described by the tutorial of Section 1.2. We describe here the
command-line options and the actions of the various menus and buttons of the interface.

Command-line options

-I d: adds d in the load path, to search for theories.

Left toolbar actions

Context The context in which the other tools below will apply. If �only unproved goals�
is selected, no action will ever be applied to an already proved goal. If �all goals�,
then actions are performed even if the goal is already proved. The second choice
allows to compare provers on the same goal.

Provers To each detected prover corresponds to a button in this prover framed box.
Clicking on this button starts the prover on the selected goal(s).

Split This splits the current goal into subgoals if it is a conjunction of two or more goals.

Inline If the goal is headed by a de�ned predicate symbol, expands it with this de�nition.

Edit Start an editor on the selected task.

For automatic provers, this allows to see the �le sent to the prover.

For interactive provers, this also allows to add or modify the corresponding proof
script. The modi�cations are saved, and can be retrieved later even if the goal was
modi�ed.

Replay Replay all obsolete proofs

If �only unproved goals� is selected, only formerly successful proofs are rerun. If �all
goals�, then all obsolete proofs are rerun, successful or not.

Remove Removes a proof attempt or a transformation.

Clean Removes any unsuccessful proof attempt for which there is another successful proof
attempt for the same goal

Interrupt Cancels all the proof attempts currently scheduled but not yet started.

70 CHAPTER 8. REFERENCE MANUALS FOR THE WHY3 TOOLS

Menus

Menu File

Add File adds a �le in the GUI

Preferences opens a window for modifying preferred con�guration parameters, see details
below

Reload reloads the input �les from disk, and update the session state accordingly

Save session Save current session state on disk. The policy to decide when to save the
session is con�gurable, as described in the preferences below.

Quit exits the GUI

Menu View

Expand All expands all the rows of the tree view

Collapse proved goals closes all the rows of the tree view which are proved.

Menu Tools A copy of the tools already available in the left toolbar, plus:

Mark as obsolete marks all the proof as obsolete. This allows to replay every proofs.

Menu Help A very short online help, and some information about this software.

Preferences

The preferences window allows you customize

• the default editor to use when the Edit button is pressed. This might be overidden
for a speci�c prover (the only way to do that for the moment is to manually edit the
con�g �le)

• the time limit given to provers, in seconds

• the maximal number of simultaneous provers allowed to run in parallel.

• The policy for saving session:

� always save on exit (default): the current state of the proof session is saving on
exit

� never save on exit: the current state of the session is never save automatically,
you must use menu File/Save session to save when wanted

� ask whether to save: on exit, a popup window ask whether you want to save or
not.

8.5. THE WHY3IDE GUI 71

Structure of the database �le

The session state is stored in an XML �le named <dir>/why3session.xml, where <dir>

is the directory of the project.
The XML �le follows the DTD given in share/why3session.dtd and reproduced be-

low.

<!ELEMENT why3session (prover*, file*)>

<!ATTLIST why3session name CDATA #REQUIRED>

<!ELEMENT prover EMPTY>

<!ATTLIST prover id CDATA #REQUIRED>

<!ATTLIST prover name CDATA #REQUIRED>

<!ATTLIST prover version CDATA #REQUIRED>

<!ELEMENT file (theory*)>

<!ATTLIST file name CDATA #REQUIRED>

<!ATTLIST file verified CDATA #REQUIRED>

<!ATTLIST file expanded CDATA #IMPLIED>

<!ELEMENT theory (goal*)>

<!ATTLIST theory name CDATA #REQUIRED>

<!ATTLIST theory verified CDATA #REQUIRED>

<!ATTLIST theory expanded CDATA #IMPLIED>

<!ELEMENT goal (proof*, transf*)>

<!ATTLIST goal name CDATA #REQUIRED>

<!ATTLIST goal expl CDATA #IMPLIED>

<!ATTLIST goal proved CDATA #REQUIRED>

<!ATTLIST goal sum CDATA #REQUIRED>

<!ATTLIST goal shape CDATA #IMPLIED>

<!ATTLIST goal expanded CDATA #IMPLIED>

<!ELEMENT proof (result|undone)>

<!ATTLIST proof prover CDATA #REQUIRED>

<!ATTLIST proof timelimit CDATA #REQUIRED>

<!ATTLIST proof edited CDATA #IMPLIED>

<!ATTLIST proof obsolete CDATA #IMPLIED>

<!ELEMENT result EMPTY>

<!ATTLIST result status (valid|invalid|unknown|timeout|failure) #REQUIRED>

<!ATTLIST result time CDATA #IMPLIED>

<!ELEMENT undone EMPTY>

<!ELEMENT transf (goal*)>

<!ATTLIST transf name CDATA #REQUIRED>

<!ATTLIST transf proved CDATA #REQUIRED>

<!ATTLIST transf expanded CDATA #IMPLIED>

72 CHAPTER 8. REFERENCE MANUALS FOR THE WHY3 TOOLS

8.6 The why3ml tool

why3ml is an additional layer on Why3 library for generating veri�cation conditions from
Why3ML programs. The command-line of why3ml is identical to that of why3, but also
accepts �les with extension .mlw as input �les containing Why3ML modules (see chapter 3
and section 5.3). Modules are turned into theories containing veri�cation conditions as
goals, and then why3ml behaves exactly as why3 for the remaining of the process. Note
that �les with extension .mlw can also be loaded in why3ide.

For those who want to experiment with Why3ML, many examples are provided in
examples/programs.

8.7 The why3bench tool

The why3bench tool adds a scheduler on top of the Why3 library. why3bench is designed
to compare various components of automatic proofs: automatic provers, transformations,
de�nitions of a theory. For that goal it tries to prove prede�ned goals using each component
to compare. why3bench allows to output the comparison in various formats:

• csv: the simpler and more informative format, the results are represented in an array,
the rows corresponds to the compared components, the columns correspond to the
result (Valid,Unknown,Timout,Failure,Invalid) and the CPU time taken in seconds.

• average: summarizes the number of the �ve di�erent answers for each component.
It also gives the average time taken.

• timeline: for each component it gives the number of valid goals along the time (10
slices between 0 and the longest time a component takes to prove a goal)

The compared components can be de�ned in an rc-�le, examples/programs/

prgbench.rc is such an example. More generally a bench con�guration �le:

[probs "myprobs"]

file = "examples/monbut.why" #relatives to the rc file

file = "examples/monprogram.mlw"

theory = "monprogram.T"

goal = "monbut.T.G"

transform = "split_goal" #applied in this order

transform = "..."

transform = "..."

[tools "mytools"]

prover = cvc3

prover = altergo

#or only one

driver = "..."

command = "..."

loadpath = "..." #added to the one in why3.conf

loadpath = "..."

8.8. THE WHY3REPLAYER TOOL 73

timelimit = 30

memlimit = 300

use = "toto.T" #use the theory toto (allow to add metas)

transform = "simplify_array" #only 1 to 1 transformation

[bench "mybench"]

tools = "mytools"

tools = ...

probs = "myprobs"

probs = ...

timeline = "prgbench.time"

average = "prgbench.avg"

csv = "prgbench.csv"

Such a �le can de�ne three families tools,probs,bench. The sections tools de�ne a
set of components to compare, the sections probs de�ne a set of goals on which to compare
some components and the sections bench de�ne which components to compare using which
goals. It refers by name to the sections tools and probs de�ned in the same �le. The
order of the de�nitions is irrelevant. Notice that loadpath in a family tools can be used
to compare di�erent axiomatizations.

One can run all the bench given in one bench con�guration �le with why3bench :

why3bench -B path_to_my_bench.rc

8.8 The why3replayer tool

The purpose of the why3replayer tool is to execute the proofs stored in a Why3 session
�le, as the one produced by the IDE. Its main goal is to play non-regression tests, e.g. you
can �nd in examples/regtests.sh a script that runs regression tests on all the examples.

The tool is invoked in a terminal or a script using

why3replayer [options] <project directory>

The session �le why3session.xml stored in the given directory is loaded and all the proofs
it contains are rerun. Then, any di�erence between the information stored in the session
�le and the new run are shown.

Nothing is shown when there is no change in the results, independently of the fact the
considered goal is proved or not. When all the proof runs are done, a summary of what
is proved or not is displayed using a tree-shape pretty print, similar to the IDE tree view
after doing �Collapse proved goals�, that is when a goal, a theory or a �le is fully proved
the subtree is not shown.

Obsolete proofs When some proofs store in the session �le are obsolete, the replay is
attempt anyway, as for the replay button in the IDE. Then, if all the replayed proofs went
OK, the session �le is updated, otherwise it is not and you have to use the IDE to update
it.

Exit code and options

74 CHAPTER 8. REFERENCE MANUALS FOR THE WHY3 TOOLS

• The exit code is 0 if no di�erence was detected, 1 if there was. Other exit codes
mean some failure in running the replay.

• option -s: suppresses the output of the �nal tree view

• option -I <path> : add <path> to the loadpath

• option -force: force writing a new session �le even if some proofs did not replay
correctly.

• option -latex <dir> : produce a summary of the replay under the form of a tabular
environment in LaTeX, one tabular for each theory, one per �le, in directory <dir> .

• option -latex2 <dir> : alternate version of LaTeX output, with a di�erent layout
of the tables.

Customizing LaTeX output The generated LaTeX �les contain some macros that
must be de�ned externally. Various de�nitions can be given to them to customize the
output.

• \provername: macro with one parameter, a prover name

• \valid: macro with one parameter, used where the corresponding prover answers
that the goal is valid. The parameter is the time in seconds.

• \noresult: macro without parameter, used where no result exists for the corre-
sponding prover

• \timeout: macro without parameter, used where the corresponding prover reached
the time limit

• \explanation: macro with one parameter, the goal name or its explnation

Figure 8.1 proposes some suggestions for these macros, together with the table obtained
from the hello proof example of Section 1.

8.9 The why3.conf con�guration �le

One can use a custom con�guration �le. why3config and other why3 tools use priorities
for which user's con�guration �le to consider:

• the �le speci�ed by the -C or --config options,

• the �le speci�ed by the environment variable WHY3CONFIG if set.

• the �le $HOME/.why3.conf ($USERPROFILE/.why3.conf under Windows) or, in the
case of local installation, why3.conf in Why3 sources top directory.

If none of these �les exists, a built-in default con�guration is used.
The con�guration �le is a human-readable text �le, which consists of association pairs

arranged in sections. Figure 8.2 shows an example of con�guration �le.
A section begins with a header inside square brackets and ends at the beginning of

the next section. The header of a section can be only one identi�er, main and ide in the
example, or it can be composed by a family name and one family argument, prover is one
family name, coq and alt-ergo are the family argument.

8.10. DRIVERS OF EXTERNAL PROVERS 75

Proof obligations A
lt
-E
rg
o
0
.9
3

C
o
q
8
.2
p
l1

S
im
p
li
fy

1
.5
.4

G1 0.01
G2 ?

G2.1 ? ? ?
G2.2 0.02 0.01

G3 0.02 ?

\usepackage{xcolor}

\usepackage{rotating}

\newcommand{\provername}[1]{\cellcolor{yellow!25}

\begin{sideways}\textbf{#1}~~\end{sideways}}

\usepackage{colortbl}

\newcommand{\noresult}{\multicolumn{1}{>{\columncolor[gray]{0.8}}c|}{~}}

\usepackage{wasysym}

\newcommand{\timeout}{\cellcolor{red!20}\clock}

\newcommand{\explanation}[1]{\cellcolor{yellow!13}\textsl{#1}}

\newcommand{\valid}[1]{\cellcolor{green!13}#1}

\newcommand{\unknown}{\cellcolor{red!20}?}

Figure 8.1: Sample macros for the LaTeX option of why3replayer

Inside a section, one key can be associated with an integer (.eg -555), a boolean (true,
false) or a string (e.g. "emacs"). One key can appear only once except if its a multi-value
key. The order of apparition of the keys inside a section matter only for the multi-value
key.

8.10 Drivers of External Provers

The drivers of external provers are readable �les, in directory drivers. Experimented
users can modify them to change the way the external provers are called, in particular
which transformations are applied to goals.

[TO BE COMPLETED LATER]

8.11 Transformations

Here is a quick documentation of provided transformations. We give �rst the non-splitting
ones, e.g. those which produce one goal as result, and others which produces any number
of goals.

Notice that the set of available transformations in your own installation is given by

76 CHAPTER 8. REFERENCE MANUALS FOR THE WHY3 TOOLS

[main]

loadpath = "/usr/local/share/why3/theories"

magic = 2

memlimit = 0

running_provers_max = 2

timelimit = 10

[ide]

default_editor = "emacs"

task_height = 384

tree_width = 438

verbose = 0

window_height = 779

window_width = 638

[prover coq]

command = "coqc %f"

driver = "/usr/local/share/why3/drivers/coq.drv"

editor = "coqide"

name = "Coq"

version = "8.2pl2"

[prover alt-ergo]

command = "why3-cpulimit %t %m alt-ergo %f"

driver = "/usr/local/share/why3/drivers/alt_ergo.drv"

editor = ""

name = "Alt-Ergo"

version = "0.91"

Figure 8.2: Sample why3.conf �le

why3 --list-transforms

Non-splitting transformations

eliminate_algebraic Replaces algebraic data types by �rst-order de�nitions [13]

eliminate_builtin Suppress de�nitions of symbols which are declared as builtin in the
driver, i.e. with a �syntax� rule.

eliminate_de�nition_func Replaces all function de�nitions with axioms.

eliminate_de�nition_pred Replaces all predicate de�nitions with axioms.

eliminate_de�nition Apply both transformations above.

eliminate_mutual_recursion Replaces mutually recursive de�nitions with axioms.

eliminate_recursion Replaces all recursive de�nitions with axioms.

eliminate_if_term replaces terms of the form if formula then t2 else t3 by lifting
them at the level of formulas. This may introduce if then else in formulas.

8.11. TRANSFORMATIONS 77

eliminate_if_fmla replaces formulas of the form if f1 then f2 else f3 by an equiv-
alent formula using implications and other connectives.

eliminate_if Apply both transformations above.

eliminate_inductive replaces inductive predicates by (incomplete) axiomatic de�ni-
tions, i.e. construction axioms and an inversion axiom.

eliminate_let_fmla Eliminates let by substitution, at the predicate level.

eliminate_let_term Eliminates let by substitution, at the term level.

eliminate_let Apply both transformations above.

encoding_smt Encode polymorphic types into monomorphic type [4].

encoding_tptp Encode theories into unsorted logic.

inline_all expands all non-recursive de�nitions.

inline_goal Expands all outermost symbols of the goal that have a non-recursive de�ni-
tion.

inline_trivial removes de�nitions of the form

function f x_1 .. x_n = (g e_1 .. e_k)

predicate p x_1 .. x_n = (q e_1 .. e_k)

when each ei is either a ground term or one of the xj , and each x1 .. xn occur at
most once in the ei

introduce_premises moves antecedents of implications and universal quanti�cations of
the goal into the premises of the task.

simplify_array Automatically rewrites the task using the lemma Select_eq of theory
array.Array.

simplify_formula reduces trivial equalities t = t to true and then simpli�es proposi-
tional structure: removes true, false, �f and f� to �f�, etc.

simplify_recursive_de�nition reduces mutually recursive de�nitions if they are not
really mutually recursive, e.g.:

function f : ... = g ...

with g : .. = e

becomes

function g : .. = e

function f : ... = g ...

if f does not occur in e

simplify_trivial_quanti�cation simpli�es quanti�cations of the form

78 CHAPTER 8. REFERENCE MANUALS FOR THE WHY3 TOOLS

forall x, x=t -> P(x)

or

forall x, t=x -> P(x)

when x does not occur in t into

P(t)

More generally, it applies this simpli�cation whenever x=t appear in a negative
position.

simplify_trivial_quanti�cation_in_goal same as above but applies only in the goal.

split_premise splits conjunctive premises.

Splitting transformations

full_split_all composition of split_premise and full_split_goal.

full_split_goal puts the goal in a conjunctive form, returns the corresponding set of
subgoals. The number of subgoals generated may be exponential in the size of the
initial goal.

simplify_formula_and_task same as simplify_formula but also removes the goal if
it is equivalent to true.

split_all composition of split_premise and split_goal.

split_goal if the goal is a conjunction of goals, returns the corresponding set of subgoals.
The number of subgoals generated is linear in the size of the initial goal.

split_intro when a goal is an implication, moves the antecedents into the premises.

Bibliography

[1] A. Ayad and C. Marché. Multi-prover veri�cation of �oating-point programs. In
J. Giesl and R. Hähnle, editors, Fifth International Joint Conference on Automated

Reasoning, Lecture Notes in Arti�cial Intelligence, Edinburgh, Scotland, July 2010.
Springer.

[2] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, Proceed-
ings of the 19th International Conference on Computer Aided Veri�cation (CAV'07),

Berlin, Germany, Lecture Notes in Computer Science. Springer, 2007.

[3] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.
Springer-Verlag, 2004.

[4] F. Bobot, S. Conchon, E. Contejean, and S. Lescuyer. Implementing Polymorphism
in SMT solvers. In C. Barrett and L. de Moura, editors, SMT 2008: 6th International

Workshop on Satis�ability Modulo, volume 367 of ACM International Conference Pro-

ceedings Series, pages 1�5, 2008.

[5] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your herd of
provers. In Boogie 2011: First International Workshop on Intermediate Veri�cation

Languages, Wrocªaw, Poland, August 2011.

[6] S. Conchon and E. Contejean. The Alt-Ergo automatic theorem prover. http://

alt-ergo.lri.fr/, 2008. APP deposit under the number IDDN FR 001 110026 000
S P 2010 000 1000.

[7] L. de Moura and N. Bjørner. Z3, an e�cient SMT solver. http://research.

microsoft.com/projects/z3/.

[8] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365�473, 2005.

[9] B. Dutertre and L. de Moura. The Yices SMT solver. available at http://yices.

csl.sri.com/tool-paper.pdf, 2006.

[10] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive
program veri�cation. In W. Damm and H. Hermanns, editors, 19th International Con-
ference on Computer Aided Veri�cation, volume 4590 of Lecture Notes in Computer

Science, pages 173�177, Berlin, Germany, July 2007. Springer.

[11] G. Melquiond. Floating-point arithmetic in the Coq system. In Proceedings of the 8th

Conference on Real Numbers and Computers, pages 93�102, Santiago de Compostela,
Spain, 2008.

[12] C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

79

http://alt-ergo.lri.fr/
http://alt-ergo.lri.fr/
http://research.microsoft.com/projects/z3/
http://research.microsoft.com/projects/z3/
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

80 BIBLIOGRAPHY

[13] A. Paskevich. Algebraic types and pattern matching in the logical language of the
Why veri�cation platform. Technical Report 7128, INRIA, 2009. http://hal.inria.
fr/inria-00439232/en/.

[14] S. Schulz. System Description: E 0.81. In D. Basin and M. Rusinowitch, editors, Proc.
of the 2nd IJCAR, Cork, Ireland, volume 3097 of LNAI, pages 223�228. Springer, 2004.

[15] N. Shankar and P. Mueller. Veri�ed Software: Theories, Tools and Experiments
(VSTTE'10). Software Veri�cation Competition, August 2010. http://www.macs.

hw.ac.uk/vstte10/Competition.html.

http://hal.inria.fr/inria-00439232/en/
http://hal.inria.fr/inria-00439232/en/
http://www.macs.hw.ac.uk/vstte10/Competition.html
http://www.macs.hw.ac.uk/vstte10/Competition.html

List of Figures

1.1 The GUI when started the very �rst time . 10
1.2 The GUI with goal G1 selected . 11
1.3 The GUI after Simplify prover is run on each goal 12
1.4 The GUI after splitting goal G2 and collapsing proved goals 12
1.5 CoqIDE on subgoal 1 of G2 . 13
1.6 File reloaded after modifying goal G2 . 14

2.1 Example of Why3 text. 18
2.2 Example of Why3 text (continued). 19

3.1 Solution for VSTTE'10 competition problem 1. 27
3.2 Solution for VSTTE'10 competition problem 2. 29
3.3 Solution for VSTTE'10 competition problem 3. 31
3.4 Solution for VSTTE'10 competition problem 4 (1/2). 34
3.5 Solution for VSTTE'10 competition problem 4 (2/2). 36
3.6 Solution for VSTTE'10 competition problem 5. 39

5.1 Syntax for constants. 50
5.2 Syntax for terms. 52
5.3 Syntax for formulas. 53
5.4 Syntax for theories. 55
5.5 Syntax for program types. 56
5.6 Syntax for program expressions. 57
5.7 Syntax for modules. 58

8.1 Sample macros for the LaTeX option of why3replayer 75
8.2 Sample why3.conf �le . 76

81

Index

?, 50
_, 49, 50, 52, 55
0B, 50
0O, 50
0X, 50
0b, 50
0o, 50
0x, 50

0, 50
1, 50
7, 50
9, 50

A, 49, 50
a, 49, 50
absurd, 57
alpha, 49
annotation, 56
any, 57
as, 52, 55, 58
assert, 57
assert, 57
assume, 57
axiom, 55

bang-op, 50
bin-digit, 50
binders, 53

check, 57
clone, 55

decl, 55
digit, 50
do, 57
done, 57
downto, 57

E, 50
e, 50
e�ect, 56

Einstein's logic problem, 21
else, 52, 53, 57
end, 52, 53, 55, 57, 58
exception, 58
exists, 53
exponent, 50
export, 55
expr, 57
expr-case, 57

F, 50
f, 50
false, 53
�eld-value, 52, 57
�le, 54, 56
�lename, 51
for, 57
forall, 53
formula, 53
formula-case, 53
fun, 57, 58
function, 55
function-decl, 55

goal, 55

h-exponent, 50
hex-digit, 50
hex-real, 50

ident, 49
if, 52, 53, 57
imp-exp, 55
import, 55, 58
in, 52, 53, 57
ind-case, 55
inductive, 55
inductive-decl, 55
in�x-op, 50
in�x-op-, 50
integer, 50

83

84 INDEX

invariant, 57

label, 51
lalpha, 49
lemma, 55
let, 52, 53, 57, 58
lident, 49
logic-decl, 55
loop, 57
loop-annot, 57
loop-inv, 57
lqualid, 49

match, 52, 53, 57
mdecl, 58
module, 58
module, 58
mrecord-�eld, 58
mtype-decl, 58
mtype-defn, 58
mutable, 58

namespace, 55, 58
not, 53

oct-digit, 50
op-char, 50
op-char-, 50

P, 50
p, 50
pattern, 52
pgm-decl, 58
pgm-defn, 58
post, 56
post-exn, 56
pre, 56
predicate, 55
predicate-decl, 55
pre�x-op, 50

quanti�er, 53

raise, 57
raises, 56
raises, 56
reads, 56
reads, 56
real, 50
rec, 57, 58
record-�eld, 55

subst, 55
subst-elt, 55

term, 52
term-case, 52
then, 52, 53, 57
theory, 55
theory, 55
to, 57
to-downto, 57
tqualid, 55
tr-term, 53
trigger, 53
triggers, 53
triple, 57
true, 53
try, 57
type, 55, 58
type, 51
type-c, 56
type-case, 55
type-decl, 55
type-defn, 55
type-param, 55
type-v, 56
type-v-binder, 56
type-v-param, 56

ualpha, 49
uident, 49
uident-opt, 55
uqualid, 49
use, 55, 58

val, 58
variant, 57
variant, 57

while, 57
with, 52, 53, 55, 57, 58
writes, 56
writes, 56

Z, 49
z, 49

	Contents
	Tutorial
	Getting Started
	Hello Proofs
	Getting Started with the GUI
	Getting Started with the Why3 Command

	The Why3 Language
	The Why3ML Programming Language
	Problem 1: Sum and Maximum
	Problem 2: Inverting an Injection
	Problem 3: Searching a Linked List
	Problem 4: N-Queens
	Problem 5: Amortized Queue

	The Why3 API
	Building Propositional Formulas
	Building Tasks
	Calling External Provers
	Building Terms
	Building Quantified Formulas
	Building Theories
	Applying transformations
	Writing new functions on term

	Reference Manual
	Language Reference
	Lexical conventions
	Why3 Language
	Why3ML Language

	Standard Library: Why3 Theories
	Library bool
	Library int
	Library real
	Library floating_point
	Library array
	Library option
	Library list

	Standard Library: Why3ML Modules
	Library ref
	Library array
	Library queue
	Library stack
	Library hashtbl
	Library string

	Reference manuals for the Why3 tools
	Compilation, Installation
	Installation of external provers
	The why3config command-line tool
	The why3 command-line tool
	The why3ide GUI
	The why3ml tool
	The why3bench tool
	The why3replayer tool
	The why3.conf configuration file
	Drivers of External Provers
	Transformations

	Bibliography
	List of Figures
	Index

